Биодоступность полициклических ароматических углеводородов в почвах, загрязненных аэральными пылевыми выпадениями

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведен модельный эксперимент по биодеградации полициклических ароматических углеводородов (ПАУ) в верхних горизонтах городских почв с различным содержанием органического вещества. В образцы почвы вносили содержащие ПАУ аэральные пылевые выпадения, почву инкубировали при постоянной влажности и температуре. На 1, 51, 102, 190 и 365 сут в почве определяли общее содержание и содержание потенциально биодоступной фракции фенантрена, пирена и бенз(a)пирена. Суммарное содержание ПАУ, определенное исчерпывающей экстракцией, и количество их потенциально биодоступной фракции, экстрагируемой н-бутанолом, экспоненциально снижалось в течение 365 дней эксперимента как в контрольных образцах, так и в смесях с атмосферной пылью. Скорость биодеградации ПАУ была пропорциональна абсолютному содержанию их биодоступной фракции в почвах и для почвы с высоким содержанием органического вещества обратно коррелировала с гидрофобностью исследованных ПАУ. Относительное содержание биодоступной фракции для фенантрена и пирена уменьшалось в ходе эксперимента, но оставалось практически постоянным для бенз(a)пирена. На основании полученных результатов предложена концептуальная схема трансформации ПАУ аэральных пылевых выпадений в почвах, в которой при оценке биодоступности ПАУ учитываются не только молекулярные параметры полиаренов, но и фазовый состав содержащей ПАУ загрязняющей формы. Показано, что процедура определения потенциально биодоступной доли полиаренов в почве путем непосредственного измерения их концентрации в н-бутаноле параллельно с измерением общего содержания ПАУ может применяться как метод экологической оценки состояния ПАУ в городских почвах при прогнозировании скорости накопления и трансформации в них гидрофобных поллютантов.

Об авторах

Ю. А. Завгородняя

МГУ им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: zyu99@mail.ru
ORCID iD: 0000-0003-0583-2140
Россия, Ленинские горы, 1, Москва, 119991

В. В. Демин

МГУ им. М.В. Ломоносова

Email: zyu99@mail.ru
Россия, Ленинские горы, 1, Москва, 119991

Список литературы

  1. Геннадиев А.Н., Пиковский Ю.И., Цибарт А.С., Смирнова М. А. Углеводороды в почвах: происхождение, состав, поведение (обзор) // Почвоведение. 2015. № 10. С. 1195–1209. https://doi.org/10.7868/S0032180X15100020
  2. Герасимова М.И., Строганова М.Н., Можарова Н.В., Прокофьева Т.В. Антропогенные почвы: генезис, география, рекультивация. Смоленск: Ойкумена, 2003. 268 с.
  3. Орлов Д.С. Химия почв. М.: Изд-во Моск. ун-та, 1985. 376 с.
  4. Прокофьева Т.В., Мартыненко И.А., Иванников Ф.А. Систематика почв и почвообразующих пород Москвы и возможность их включения в общую классификацию // Почвоведение. 2011. № 5. С. 611–623.
  5. Прокофьева Т.И., Герасимова М.И., Безуглова О.С., Бахматова К.А., Гольева А.А., Горбов С.Н., Жарикова Е.А., Матинян Н.Н., Наквасина Е.Н., Сивцева Н.Е. Введение почв и почвоподобных образований городских территорий в классификацию почв России // Почвоведение. 2014. № 10. С. 1155–1164. https://doi.org/10.7868/S0032180X14100104
  6. Agency for Toxic Substances and Disease Registry, 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). TP-95-20, U.S. Department of Health and Human Service, ATSDR, Atlanta, GA.
  7. Alexander M. Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants // Environ. Sci. Technol. 2000. V. 34(20). P. 4259–4265.
  8. Ananyeva N.D., Susyan E.A., Gavrilenko E.G. Determination of the soil microbial biomass carbon using the method of substrate induced respiration // Eurasian Soil Science. 2011. V. 44. P. 1215–1221. https://doi.org/10.1134/S1064229311030021
  9. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221.
  10. Bandowe B., Wilcke W. Analysis of Polycyclic Aromatic Hydrocarbons and Their Oxygen-Containing Derivatives and Metabolites in Soils // J. Environ. Quality. 2010. V. 39(4). P. 1349–1358.
  11. Bogan B.W., Sullivan W.R. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil // Chemosphere. 2003. V. 52. Р. 1717–1726.
  12. Bumpus J.A. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaetech rysosporium // Appl. Environ. Microbiol. 1989. V. 61. P. 2631–2635.
  13. Cerniglia C.E. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation // J. Industrial Microbiol. Biotechnol. 1997. V. 19. P. 324–333.
  14. Cheng H., Sun Q., Bian Y., Han J., Jiang X., Xue J., Song Y. Predicting the bioavailability of polycyclic aromatic hydrocarbons in rhizosphere soil using a new novel in situ solid-phase microextraction technique // Sci. Total Environ. 2024. V. 930. P. 172802. https://doi.org/10.1016/j.scitotenv.2024.172802
  15. Chung N., Alexander M. Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. // Environ. Sci. Technol. 1998. V. 32. P. 855–860.
  16. Chung N., Alexander M. Effect of soil properties on bioavailability andextractability of phenanthrene and atrazine sequestered in soil // Chemosphere. 2002. V. 48. P. 109–115.
  17. Cui X., Mayer P., Gan J. Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations // Environ. Poll. 2013. V. 172. P. 223–234.
  18. Cuypers C.T., Grotenhuis P.T., Rulkens W. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques // Chemosphere. 2002. V. 46. P. 1235–1245.
  19. Dat N.-D., Chang M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies // Sci. Total Environ. 2017. V. 609. P. 682–693. https://doi.org/10.1016/j.scitotenv.2017.07.204
  20. Dobbins R.A., Fletcher R.A., Chang H.-C. The Evolution of Soot Precursor Particles in a Diffusion Flame // Combustion and flame. 1998. V. 115. P. 285–298.
  21. Dean J.R. Bioavailability, Bioaccessibility and Mobility of Environmental Contaminants. Chichester, 2007.
  22. Doick K.J., Dew N.M., Semple K.T. Linking Catabolism to Cyclodextrin Extractability: Determination of the Microbial Availability of PAHs in Soil // Environ. Sci. Technol. 2005. V. 39. P. 8858–8864.
  23. Dua M., Singh A., Sethunathan N., Johri A.K. Biotechnology and bioremediation: successes and limitations // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 143–152.
  24. Duan L., Naidu R. Effect of ionic strength and index cation on the sorption of phenanthrene. // Water, Air, Soil Poll. 2013. V. 224. P. 1700–1717.
  25. Ehlers G.A.C., Loibner A.P. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: a review of geosorbent characterisation and (bio)availability prediction // Environ. Poll. 2006. V. 141. P. 494–512.
  26. Ehlers L.J., Luthy R.G. Contaminant bioavailability in soil and sediment // Environ. Sci. Technol. 2003. V. 37(15). P. 295–302.
  27. Eweis J.B., Ergas S.J., Chang D.P.Y., Schroeder E.D. Bioremediation Principles. Boston 1998.
  28. Fang X., Wu L., Zhang O., Zhang J., Wang A., Zhang Y., Zhao J., Mao H. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement // Transportation Research Part D: Transport and Environment. 2019. V. 67. P. 674–684. https://doi.org/.org/10.1016/j.trd.2018.02.021
  29. Gao Y., Hu X., Zhou Z., Zhang W., Wang Y., Sun B. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils // Environ. Poll. 2017. V. 222. P. 465–476. http://dx.doi.org/10.1016/j.envpol.2016.11.076
  30. Guo W., Ren H., Jin Y., Chai Z., Liu B. The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review // Chemosphere. 2024. V. 355. P. 141852. https://doi.org/10.1016/j.chemosphere.2024.141852
  31. Haritash A.K., Kaushik C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs) // J. Hazardous Mater. 2009. V. 169. P. 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137.
  32. Hatzinger P.B., Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability // Environ. Sci. Technol. 1995. V. 29. P. 537–545.
  33. Hundal L.S., Thompson M.L., Laird D.A., Carmo A.M. Sorption of phenanthrene by reference smectites // Environ. Sci. Technol. 2001. V. 35. P. 3456-3461.
  34. Hwang S., Cutright T.J. Effect of Expandable Clays and Cometabolism on PAH Biodegradability // Environ. Sci. Poll. Res. 2003. V. 10(5). P. 277–280. https://doi.org/0.1065/espr2003.08.167
  35. Jahin H.S., Barsoum B.N., Tawfic T.A., Headley J.V. Occurrence and distribution of polycyclic aromatic hydrocarbons in the Egyptian aquatic environment // J. Environ. Sci. Health. 2009. V. 44. P. 1237-1243.
  36. Juhasz A.L. Bioavailability and biodegradation of polycyclic aromatic hydrocarbons // Microbiology Australia. 2014. V. 10 P. 199-200.
  37. Käcker T., Haupt E.T.K., Garms C., Francke W., Steinhart H. Structural characterisation of humic acid-bound PAH residues in soil by 13C-CPMAS-NMR-spectroscopy: evidence of covalent bonds // Chemosphere. 2002. V. 48. P. 117–131.
  38. Kelsey J.W., Kottler B.D., Alexander M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals // Environ. Sci. Technol. 1997. V. 31. P. 214–217.
  39. Kosheleva N.E., Vlasov D.V., Timofeev I.V., Samsonov T.E., Kasimov N.S. Benzo[a]pyrene in Moscow road dust: pollution levels and health risks // Environ. Geochem. Health. 2023. V. 45. P. 1669–1694. https://doi.org/10.1007/s10653-022-01287-9
  40. Krauss M., Wilcke W., Zech W. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. // Environ. Sci. Technol. 2000. V. 34. P. 4335–4340.
  41. Kuppusamy S., Thavamani P., Venkateswarlu K., Lee Y.B., Naidu R., Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs)contaminated soils: Technological constraints, emerging trends and future directions // Chemosphere. 2017. V. 168. P. 944–968. https://dx.doi.org/10.1016/j.chemosphere.2016.10.115
  42. Kuzyakov Y., Friedel J.K., K. Stahr K. Review of mechanisms and quantification of priming effects // Soil Biol. Biochem. 2000. V. 32. P. 1485–1498.
  43. Lei L., Bagchi R., Khodadoust A.P., Suidan M.T., Tabak H.H. Bioavailability prediction of polycyclic aromatic hydrocarbons in field-contaminated sediment by mild extractions // J. Environ. Engineering-ASCE. 2006. V. 132. P. 384–391.
  44. Liste H.-H., Alexander M. Butanol extraction to predict bioavailability of PAHs in soil // Chemosphere. 2002. V. 46. P. 1011–1017.
  45. Liu S., Tao S., Liu W., Dou H., Liu Y., Zhao J., Little M.G., Tian Z., Wang J., Wang L., Gao Y. Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain // Environ. Poll. 2008. V. 156. P. 651–656.
  46. MacLeod C.J.A., Semple K.T. Influence of contact time on extractability and degradation of pyrene in soils // Environ. Sci. Technol. 2000. V. 34. P. 4952–4957.
  47. Nam K., Alexander M. Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids // Environ. Sci. Technol. 1998. V. 32. P. 71–74.
  48. Nam K., Kim J.Y. Role of loosely bound humic substances and humin in bioavailability of phenanthrene aged in soil // Environ. Poll. 2002. V. 118. P. 427–433.
  49. Ni J., Luo Y., Wei R., Li X. Distribution patterns of polycyclic aromatic hydrocarbons among different organic carbon fractions of polluted agricultural soils // Geoderma. 2008. V. 146. P. 277–282. https://doi.org/10.1016/j.geoderma.2008.06.001
  50. Nikiforova E.M., Kosheleva N.E. Polycyclic Aromatic Hydrocarbons in Urban Soils (Moscow, Eastern District) // Eurasian Soil Science. 2011. V. 44 P. 1018–1030. https://doi.org/10.1134/S1064229311090092
  51. Ortega-Calvo J.J., Harmsen J., Parsons J.R., Semple K.T., Aitken M.D., Ajao C., Eadsforth C., Galay-Burgos M., Naidu R., Oliver R., Peijnenburg W.J.G.M., Römbke J., Streck G., Versonnen B. From Bioavailability Science to Regulation of Organic Chemicals // Environ. Sci. Technol. 2015. V. 49. P. 10255−10264. https://doi.org/10.1021/acs.est.5b02412
  52. Patel A. B., Shaikh S., Jain K. R., Desai C., Madamwar D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches // Frontiers in Microbiology. 2020, V. 11. P. 562813. https://doi.org/10.3389/fmicb.2020.562813
  53. Peng C., Ouyang Z., Wang M., Chen W., Li X., Crittenden J.C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators // Environ. Poll. 2013. V. 178. P. 426–432.
  54. Pu X., Lee L.S., Galinsky R.E., Carlson G.P. Evaluation of rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils // Toxicol. Sci. 2004. V. 79. P. 10–17.
  55. Qin S., Li X., Han E., Fan Y., Liu S., Ding Y., Qi S. Strategies and mechanisms for improving the detection accuracy of nonextractable residues of polycyclic aromatic hydrocarbons in soils // Sci. Total Environ. 2024. V. 943. P. 173908. https://doi.org/10.1016/j.scitotenv.2024.173908
  56. Ravindra K., Sokhi R., Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation // Atmospheric Environment. 2008. V. 42. P. 2895–2921.
  57. Reichenberg F., Mayer P. Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. // Environ. Toxicol. Chem. 2006. V. 25. P. 1239-45.
  58. Richnow H.H., Seifert R., Hefter J., Link A., Francke W., Schaefer G., Michaelis W. Organic pollutants associated with macromolecular soil organic matter: Mode of binding // Org. Geochem. 1997. V. 26. P. 745-758.
  59. Riding M.J., Doick K.J., Martin F.L., Jones K.C., Semple K.T. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application // J. Hazardous Mater. 2013. V. 261. P. 687–700. dx.doi.org/10.1016/j.jhazmat.2013.03.033
  60. Semenova A.V., Popovicheva O.B., Zavgorodnyaya Yu.A., Chichaeva M.A., Kovach R.G., Kosheleva N.E., Minkina T.M., Kasimov N.S. Aerosol Pollution of the Moscow Megacity by Polyaromatic Hydrocarbons: Seasonal Variability and Toxicological Risks // Her. Rus. Acad. Sci. 2023. V. 93. P. 316–329. https://doi.org/10.1134/S1019331623040056
  61. Semerjian L., Okaiyeto K., Ojemaye M.O., Ekundayo T.C., Igwaran A., Okoh A.I. Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction // Sustainability. 2021. V. 13. P. 11516. https://doi.org/10.3390/su132011516
  62. Semple K.T., Morriss A. W. J., Patton G.I. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis // Eur. J. Soil Sci. 2003. V. 54. P. 809–818.
  63. Shao C., Wang Q., Zhang W., Bennett A., Li Y., Guo J., Im H.G., Roberts W.L., Violi A., Sarathy S.M. Elucidating the polycyclic aromatic hydrocarbons involved in soot inception // Commun. Chem. 2023. V. 6. P. 223. https://doi.org/10.1038/s42004-023-01017-x
  64. Sijm D, Kraaij R, Belfroid A. Bioavailability in soil or sediment: exposure of different organisms and approaches to study it // Environ. Poll. 2000. V. 108. P. 113-119.
  65. Singh A., Ward O.P. Biodegradation and Bioremediation: Ser. Soil Biolog. V. 2. N.Y.: Springer-Verlag, 2004.
  66. Slezakova K, Castro D, Delerue-Matos C, da Conceição Alvim-Ferraza M, Morais S, do Carmo Pereira M. Impact of vehicular traffic emissions on particulate-bound PAHs: levels and associated health risks // Atmospheric Res. 2013. V. 127. P. 141–147.
  67. Stogiannidis E., Laane R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities // Reviews of Environmental Contamination and Toxicology. 2015. V. 234. P. 49–133.
  68. Tao S., Xu F.L., Liu W.X., Cui Y.H., Coveney R.M. A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter // Environ. Sci. Technol. 2006. V. 40. P. 2219–2224.
  69. Tobiszewski M., Namiesnik J. PAH diagnostic ratios for the identification of pollution emission sources. // Environ. Poll. 2012. V. 162. P. 110–119.
  70. Towell M. G., Vazquez-Cuevas G.M., Bellarby J., Paton G.I., Coulon F., Pollard S.J.T., Semple K.T. Temporal changes in the extractability, bioaccessibility and biodegradation of target hydrocarbons in soils from former refinery facilities // Int. Biodeterioration Biodegradation. 2021. V. 160. 105227. https://doi.org/10.1016/j.ibiod.2021.105227
  71. Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles // Environ. Poll.n. 1999. V. 105. P. 67–74.
  72. Twigg M.V., Phillips P.R. Cleaning the Air We Breathe – Controlling Diesel Particulate Emissions from Passenger Cars // Platinum Metals Review. 2009. V. 53(1). P. 27–34. https://doi.org/10.1595/147106709X390977
  73. Umeh A.C., Duana L., Naidu R., Semple K.T. Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: A strong case for greater focus on readily available and not total-extractable fractions in risk assessment // J. Hazardous Mater. 2019. V. 368. P. 72–80. https://doi.org/10.1016/j.jhazmat.2019.01.030
  74. Vlasov D., Ramirez O., Luhar A. Road dust in urban and industrial environments: Sources, pollutants, impacts, and management // Atmosphere. 2022. V. 13. P. 607. https://doi.org/10.3390/atmos13040607
  75. Wei Z., Niu S., Wei Y., Liu Y., Xu Y., Yang Y., Zhang P., Zhou Q., Wang J.J. The role of extracellular polymeric substances (EPS) in chemical-degradation of persistent organic pollutants in soil: A review // Sci. Total Environ. 2024. V. 912. P. 168877. https://doi.org/10.1016/j.scitotenv.2023.168877
  76. Wilcke W. Polycyclic aromatic hydracarbons (PAHs) in soil – a review // J. Plant Nutrition Soil Sci. 2000. V. 163. P. 229–248.
  77. Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil // Geoderma. 2007. V. 141. P. 157–166. https://doi.org/10.1016/j.geoderma.2007.07.007
  78. Wild S.R., Jones K.C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget // Environ. Poll. 1995. V. 88(1). P. 91–108.
  79. Wu S.C., Gschwend P.M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. // Environ. Sci. Technol. 1986. V. 20. P. 717–725.
  80. Xing A., Pignatello J.J. Dual-mode sorption of low polarity compounds in glassy poly(vinyl chloride) and soil organic matter // Environ. Sci. Technol. 1997. V. 31. P. 792–799.
  81. Yemele O.M., Zhao Z., Nkoh J.N., Ymele E., Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution // Sci. Total Environ. 2024. V. 926. P. 171577. https://doi.org/10.1016/j.scitotenv.2024.171577
  82. Yu L., Duan L., Naidu R., Semple K.T. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture // Sci. Total Environ. 2018. V. 613–614. P. 1140–1153. https://doi.org/10.1016/j.scitotenv.2017.09.025
  83. Yu L., Duan L., Naidu R., Meng F., Semple K.T. Effects of source materials on desorption kinetics of carcinogenic PAHs from contaminated soils // Chemosphere. 2023. V. 335. P. 139095. https://doi.org/10.1016/j.chemosphere.2023.139095
  84. Yuan S.Y., Chang J.S., Yen J.H., Chang B.V. Biodegradation of phenanthrene inriver sediment // Chemosphere. 2001. V. 43. P. 273–278.
  85. Zavgorodnyaya Y.A., Chikidova A.L., Biryukov M.V., Demin V.V. Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow, Russia // J. Soils Sediments. 2019. V. 19. P. 3155–3165. https://doi.org/10.1007/s11368-018-2067-3

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Приложение

Скачать (109KB)
3. Рис. 1. Изменение доступности органического соединения с увеличением времени контакта соединения и почвы (ISO/TS 16751:2020(en)).

Скачать (81KB)
4. Рис. 2. Изменение суммарного содержания (графики слева) и содержания биодоступной фракции (графики справа) фенантрена (а), пирена (b), бенз(а)пирена (c) в почвах в ходе модельного эксперимента (среднее значение для трех повторностей; планки погрешностей – стандартное отклонение).

Скачать (284KB)
5. Рис. 3. Зависимость скорости биодеградации ПАУ ((а) – фенантрена, (b) – пирена, (c) – бенз(а)пирена) от содержания в почвах их биодоступной фракции; пустые маркеры – незагрязненные почвы, заполненные маркеры – почвы, загрязненные АПВ (среднее значение для трех повторностей; планки погрешностей – стандартное отклонение).

Скачать (216KB)
6. Рис. 4. Изменение потенциальной биодоступности ПАУ ((а) – фенантрена, (b) – пирена, (c) – бенз(а)пирена) в ходе модельного эксперимента (верхняя линия – общее содержание ПАУ, % от исходного; нижняя линия – содержание труднодоступной фракции ПАУ, % от исходного).

Скачать (388KB)
7. Рис. 5. Концептуальная схема изменения биодоступности ПАУ из аэральных пылевых выпадений (АПВ) в горизонтах почв с разным содержанием органического вещества (толщина стрелок указывает на интенсивность перехода ПАУ в биодоступную фракцию). (a) – незагрязненные почвы и АПВ; (b) – первый этап трансформации АПВ в почвах (0–3 мес.); (c) – второй этап трансформации АПВ в почвах (3–12 мес.).

Скачать (450KB)
8. Таблица 2 рисунок 1

9. Таблица 2 рисунок 2

10. Таблица 2 рисунок 3


© Российская академия наук, 2025