Removal of Lead Ions from Aqueous Media by a Cryogel Based on Graphene Oxide Modified with Lignosulfonate: A Kinetic Study
- Autores: Mkrtchyan E.S.1, Ananyeva O.A.1, Burakova I.V.1, Memetova A.E.1, Burakov A.E.1, Tkachev A.G.1
- 
							Afiliações: 
							- Tambov State Technical University, 392000, Tambov, Russia
 
- Edição: Volume 59, Nº 2 (2023)
- Páginas: 139-144
- Seção: ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ НА МЕЖФАЗНЫХ ГРАНИЦАХ
- URL: https://kld-journal.fedlab.ru/0044-1856/article/view/663825
- DOI: https://doi.org/10.31857/S0044185623700158
- EDN: https://elibrary.ru/SYIASM
- ID: 663825
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This paper studies the kinetics of adsorption of lead ions from aqueous solutions under static conditions on a new nanocomposite material—graphene oxide/lignosulfonate (GO/LS). The adsorption capacity of the nanocomposite with respect to lead ions was 179 mg/g at a extraction time of 20 min. The experimental kinetic dependences were processed in the coordinates of the Elovich pseudo-first- and -second-order models, as well as the Morris and Weber diffusion models and the Boyd model. The performed calculations led to the conclusion that the pseudo-second-order model most accurately describes the adsorption of Pb2+ ions on GO/LS (R2 = 0.999). In this case, the calculated adsorption capacity was 182.52 mg/g. According to diffusion models, sorption is not limited by diffusion, but the rate of the process is limited by diffusion through the film formed on the surface of the sorbent. Thus, we can conclude that the film-diffusion mechanism of adsorption of Pb2+ ions on GO/LS with a contribution to the overall rate of the process of sorbate–sorbate interaction. The results obtained allow us to state that the GO/LS nanocomposite is a promising sorbent in the processes of removing heavy-metal ions from polluted hydrogeosystems and can be considered an effective solution for ensuring the environmental safety of the environment.
Palavras-chave
Sobre autores
E. Mkrtchyan
Tambov State Technical University, 392000, Tambov, Russia
														Email: iris_tamb68@mail.ru
				                					                																			                												                								Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2						
O. Ananyeva
Tambov State Technical University, 392000, Tambov, Russia
														Email: iris_tamb68@mail.ru
				                					                																			                												                								Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2						
I. Burakova
Tambov State Technical University, 392000, Tambov, Russia
														Email: iris_tamb68@mail.ru
				                					                																			                												                								Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2						
A. Memetova
Tambov State Technical University, 392000, Tambov, Russia
														Email: iris_tamb68@mail.ru
				                					                																			                												                								Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2						
A. Burakov
Tambov State Technical University, 392000, Tambov, Russia
														Email: iris_tamb68@mail.ru
				                					                																			                												                								Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2						
A. Tkachev
Tambov State Technical University, 392000, Tambov, Russia
							Autor responsável pela correspondência
							Email: iris_tamb68@mail.ru
				                					                																			                												                								Россия, 392000, Тамбов, ул. Советская, 106/5, пом. 2						
Bibliografia
- Francis M. // Political Geography. 2022. № 97. 102627. https://doi.org/10.1016/j.polgeo.2022.102627
- Mkrtchyan F.A., Shapovalov S.M. // Russian J. Earth Sciences. 2018. V. 18. № 4. ES4001-10. https://doi.org/10.2205/2018ES000624
- Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E. et al. // Ecotoxicology and Environmental Safety. 2018. № 148. P. 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034
- Horikawa T., Okamoto M., Kuroki-Matsumoto A., Yoshida K. // Carbon. 2022. V. 196. P. 575–588. https://doi.org/10.1016/j.carbon.2022.05.031
- Mishra Sh., Tripathi A. // Environmental Nanotechnology, Monitoring and Manайagement. 2022. V. 17. 100632. https://doi.org/10.1016/j.enmm.2021.100632
- Barus D.A., Humaidi S., Ginting R.T., Sitepu J. // Environmental Nanotechnology, Monitoring and Management. 2022. № 17. 100650. https://doi.org/10.1016/j.enmm.2022.100650
- Dotto G.L., Pinto L.A.A. // Carbohydrate Polymers. 2011. V. 84. № 1. P. 231–238. https://doi.org/10.1016/j.carbpol.2010.11.028
- Menazea A.A., Ezzat H.A., Omara W., Basyouni O.H. et al. // Computational and Theoretical Chemistry. 2020. № 1189. 112980. https://doi.org/10.1016/j.comptc.2020.112980
- Aung W.M., Marchenko M.V., Troshkina I.D., Burakova I.V. et al. // Advanced materials and technologies. 2019. V. 16. № 4. P. 58–65. https://doi.org/10.17277/amt.2019.04.pp.058-065
- Yang J., Yu M., Chen W. // J. Industrial and Engineering Chemistry. 2015. V. 21. P. 414–422. https://doi.org/10.1016/j.jiec.2014.02.054
- Chidi O., Kelvin R. // Chemistry International. 2018. № 4. P. 221–229.
- Cheung C.W., Porter J.F., McKay G. // Separation and Purification Technology. 2000. № 19. P. 55–64. https://doi.org/10.1016/S1383-5866(99)00073-8
- Kumar K.V. // J. Hazardous Materials. 2006. № 137. P. 1538–1544. https://doi.org/10.1016/j.jhazmat.2006.04.036
- Fu B., Ferronato C., Fine L., Meunier F. et al. // Chemical Engineering J. 2021. V. 405. 127016. https://doi.org/10.1016/j.cej.2020.127016
- Ngah W.S.W., Kamari A., Koay Y. // International J. Biological Macromolecules. 2004. V. 34. P. 155–161. https://doi.org/10.1016/j.ijbiomac.2004.03.001
- Cheung C.W., Porter J.F., McKay G. // J. Chemical Technology and Biotechnology. 2000. V. 75. № 11. P. 963–970. https://doi.org/10.1002/1097-4660(200011)75:11<963: :AID-JCTB302>3.0.CO;2-Z
- López-Luna J., Ramírez-Montes L.E., Martinez-Vargas S., Martínez A.I. et al. // SN Applied Sciences. 2019. № 1. P. 1–19. https://doi.org/10.1007/s42452-019-0977-3
- Weber W.J., Morris J.C. // J. Sanitary Engineering Division. 1963. V. 89. P. 31–59. https://doi.org/10.1061/jsedai.0000430
- Tran H.N., You S.J., Hosseini-Bandegharaei A., Chao H.P. // Water Research. 2017. V. 120. P. 88–116. https://doi.org/10.1016/j.watres.2017.04.014
- Boyd G.E., Schubert J., Adamson A.W. // J. American Chemical Society. 1947. V. 69. № 11. P. 2818–2829. https://doi.org/10.1021/ja01203a064
- Cáceres-Jensen L., Rodríguez-Becerra J., Parra-Rivero J., Escudey M. et al. // J. Hazardous Materials. 2013. V. 261. P. 602–613. https://doi.org/10.1016/j.jhazmat.2013.07.073
- Reichenberg D. // J. American Chemical Society. 1953. V. 75. № 3. P. 589–597. https://doi.org/10.1021/ja01099a022
- Khan T.A., Chaudhry S.A., Ali I. // J. Molecular Liquids. 2015. V. 202. P. 165–175. https://doi.org/10.1016/j.molliq.2014.12.021
- Jain M., Yadav M., Kohout T., Lahtinen M. et al. // Water Resources and Industry. 2018. V. 20. P. 54–74. https://doi.org/10.1016/j.wri.2018.10.001
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



