Электрохимически осажденные наночастицы золота на углеродных наноматериалах и тиакаликсаренах в составе иммуносенсоров при определении трициклических антидепрессантов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложены композитные материалы на основе электрохимически осажденных наночастиц золота, полученных в режиме циклической вольтамперометрии и хроноамперометрии, на углеродной подложке из функционализированного оксида графена, восстановленного оксида графена и бумаги из углеродных нанотрубок. Проведен скрининг композитных материалов методами атомно-силовой микроскопии, спектроскопии электрохимического импеданса и вольтамперометрия, что позволило выбрать лучшие в качестве модификаторов планарных электродов, на основе которых разработаны высокочувствительные иммуносенсоры. Для лучших амперометрических иммуносенсоров на основе сочетания углеродной бумаги, амино(тиа)каликс[4]арена и наночастиц золота при определении амитриптилина и дезипрамина область рабочих концентраций составила 1 × 10–9–1 × 10–4 М, нижняя граница определяемых концентраций – (4–6) × 10–10 М. Амитриптилин и дезипрамин определены амперометрическими иммуносенсорами в фармацевтических препаратах с относительным стандартным отклонением, не превышающим 0.040. Cопоставление результатов определения трициклических антидепрессантов иммуносенсорами и поляризационным флуоресцентным иммуноанализом в урине человека с относительным стандартным отклонением, не превышающим 0.085, указывает на правильность и сходимость полученных результатов.

Полный текст

Доступ закрыт

Об авторах

Д. В. Брусницын

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Автор, ответственный за переписку.
Email: brussman@mail.ru
Россия, Казань

А. Н. Рамазанова

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Email: brussman@mail.ru
Россия, Казань

Э. П. Медянцева

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Email: brussman@mail.ru
Россия, Казань

Э. Р. Рамазанова

Казанский национальный исследовательский технологический университет, Институт нефти, химии и нанотехнологий

Email: brussman@mail.ru
Россия, Казань

А. В. Прыткова

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Email: brussman@mail.ru
Россия, Казань

Э. Р. Каримова

ГАУЗ “Межрегиональный клинико-диагностический центр”

Email: brussman@mail.ru
Россия, Казань

М. А. Зиганшин

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Email: brussman@mail.ru
Россия, Казань

В. А. Бурилов

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Email: brussman@mail.ru
Россия, Казань

Е. Г. Макаров

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Email: brussman@mail.ru
Россия, Казань

Т. Л. Хамидуллин

Казанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова

Email: brussman@mail.ru
Россия, Казань

Список литературы

  1. Balahura L.R., Stefan-Van Staden R.I., Van Staden J.F., Aboul-Enein H.Y. Advances in immunosensors for clinical applications // J. Immunoassay Immunochem. 2019. V. 40. № 1. P. 40. https://doi.org/10.1080/15321819.2018.1543704
  2. Medyantseva E.P., Brusnitsyn D.V., Gazizullina E.R., Budnikov H.C. Analytical capabilities of some immunosensors for the determination of drugs / Macro, Micro, and Nano-Biosensors: Potential Applications and Possible Limitations / Eds. M. Rai, A. Reshetilov, Y. Plekhanova, A.P. Ingle. Springer, 2021. P. 177. https://doi.org/10.1007/978-3-030-55490-3_10
  3. Wang A., Ma K., You X., Chen Y., Liu H., Qi Y. et al. A sensitive analysis of sulfadimethoxine using an AuNPs/Ag-GO-Nf-based electrochemical immunosensor // J. Solid State Electrochem. 2022. V. 26. P. 515. https://doi.org/10.1007/s10008-021-05069-8
  4. Ibragimova R., Burilov V., Aimetdinov A., Mironova D., Evtugyn V., Osin Y. et al. Polycationic derivatives of p-tert-butylthiacalix[4]arene in 1,3-alternate stereoisomeric form: new DNA condensing agents // Macroheterocycles. 2016. V. 9. № 4. P. 433. https://doi.org/10.6060/mhc161180b
  5. Kanu A.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review // J. Chromatogr. A. 2021. V. 1654. Article 462444. https://doi.org/10.1016/j.chroma.2021.462444
  6. Kasagic-Vujanovic I., Jancic-Stojanovic B. Quality by design oriented development of hydrophilic interactionliquid chromatography method for the analysis of amitriptyline and its impurities // J. Pharm. Biomed. Anal. 2019. V. 173. P. 86. https://doi.org/10.1016/j.jpba.2019.05.026
  7. Sajid M., Alhooshani K. Dispersive liquid-liquid microextraction based binary extraction techniques prior to chromatographic analysis: A review // Trends Anal. Chem. 2018. V. 108. P. 167. https://doi.org/10.1016/j.trac.2018.08.016
  8. Safari M., Shahlaei M., Yamini Y., Shakorian M., Arkan E. Magnetic framework composite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of tricyclic antidepressants // Anal. Chim. Acta. 2018. V. 1034. P. 204. https://doi.org/10.1016/j.aca.2018.06.023
  9. Karami M., Yamini Y. On-disc electromembrane extraction-dispersive liquid-liquid microextraction: A fast and effective method for extraction and determination of ionic target analytes from complex biofluids by GC/MS // Anal. Chim. Acta. 2020. V. 1105. P. 95. https://doi.org/ 10.1016/j.aca.2020.01.024
  10. Křesinová Z., Linhartová L., Petrů K., Krejčová L., Šrédlová K., Lhotský O. et al. Method for analysis of psychopharmaceuticals in real industrial wastewater and groundwater with suspended organic particulate matter using solid phase extraction disks extraction and ultra-high performance liquid chromatography/time-of-flight mass spectrometry // J. Chromatogr. A. 2016. V. 1440. P. 15. https://doi.org/10.1016/j.chroma.2016.02.035
  11. Rossmann J., Renner L.D., Oertel R., El-Armouche A. Post-column infusion of internal standard quantification for liquid chromatography-electrospray ionization-tandem mass spectrometry analysis – Pharmaceuticals in urine as example approach // J. Chromatogr. A. 2018. V. 1535. P. 80. https://doi.org/ 10.1016/j.chroma.2018.01.001
  12. Carasek E. Morés L., Merib J. Basic principles, recent trends and future directions of microextraction techniques for the analysis of aqueous environmental samples // Trends Anal. Chem. 2018. V. 19. Article e00060. https://doi.org/10.1016/j.teac.2018.e00060
  13. Oliveira F.M., Scheel G.L., Augusti R., Tarley C.R.T., Nascentes C.C. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine // Anal. Chim. Acta. 2020. V. 1106. P. 52. https://doi.org/10.1016/j.aca.2020.01.061
  14. Ocana-Gonzalez J.A., Fernandez-Torres R., Bello-Lopez M.A., Ramos-Payan M. New developments in microextraction techniques in bioanalysis. A review // Anal. Chim. Acta. 2016. V. 905. P. 8. https://doi.org/10.1016/j.aca.2015.10.041
  15. Mansour F.R., Khairy M.A. Pharmaceutical and biomedical applications of dispersive liquid–liquid microextraction // J. Chromatogr. B. 2017. V. 1061–1062. P. 382. https://doi.org/10.1016/j.jchromb.2017.07.055
  16. Yu R.B., Quirino J.P. Open-tubular admicellar electrochromatography of charged analytes // Talanta. 2020. V. 208. Article 120401. https://doi.org/10.1016/j.talanta.2019.120401
  17. Wu H.-F., Kailasa S.K., Yan J.-Y., Chin C.-C., Ku H.-Y. Comparison of single-drop microextraction with microvolume pipette extraction directly coupled with capillary electrophoresis for extraction and separation of tricyclic antidepressant drugs // J. Ind. Eng. Chem. 2014. V. 20. № 4. Article 2071. https://doi.org/10.1016/j.jiec.2013.09.034
  18. Kamari K., Taheri A. Preparation and evaluation of magnetic core–shell mesoporous molecularly imprinted polymers for selective adsorption of amitriptyline in biological samples // J. Taiwan Inst. Chem. Eng. 2018. V. 86. P. 230. https://doi.org/10.1016/j.jtice.2018.02.031
  19. Rutkowska M., Płotka-Wasylka J., Morrison C., Wieczorek P.P., Namiesnik J., Marc M. Application of molecularly imprinted polymers in analytical chiral separations and analysis // Trends Anal. Chem. 2018. V. 102. P. 91. https://doi.org/10.1016/j.trac.2018.01.011
  20. Brusnitsyn D.V., Medyantseva E.P., Varlamova R.M. Carbon nanomaterials as electrode surface modifiers in development of amperometric monoamino oxidase biosensors // Inorg. Mater. 2016. V. 52. № 14. P. 1413. https://doi.org/10.1134/S002016851614003X
  21. Медянцева Э.П., Брусницын Д.В., Газизуллина Э.Р., Варламова Р.М., Коновалова О.А., Будников Г.К. Гибридные нанокомпозиты как модификаторы электродов амперометрических иммуносенсоров при определении амитриптилина // Журн. аналит. химии. 2020. Т. 75. № 4. С. 360. https://doi.org/10.31857/S0044450220040118 (Medyantseva E.P., Brusnitsyn D.V., Gazizullina E.R., Varlamova R.M., Konovalova O.A., Budnikov H.C. Hybrid nanocomposites as electrode modifiers in amperometric immunosensors for the determination of amitriptyline // J. Anal. Chem. 2020. V. 75. № 4. P. 536. https://doi.org/10.1134/S1061934820040103)
  22. Медянцева Э.П., Газизуллина Э.Р., Брусницын Д.В., Добрынин А.Б., Брылев К.А., Мустафина А.Р., Елистратова Ю.Г. Амперометрические иммуносенсоры на основе углеродных наноматериалов и кластеров рения для определения трициклических антидепрессантов в последовательной инжекционной системе // Аналитика и контроль. 2022. Т. 26. № 4. С. 255. https://doi.org/10.15826/analitika.2022.26.4.002
  23. Medyantseva E.P., Brusnitsyn D.V., Varlamova R.M. Nanostructured composites based on graphene and cobalt nanoparticles in monoamine oxidase biosensors for determining antidepressants // Inorg. Mater. 2019. V. 55. № 14. P. 1390. https://doi.org/10.1134/S0020168519140103
  24. Медянцева Э.П., Брусницын Д.В., Газизуллина Э.Р., Бейлинсон Р.М., Еремин С.А., Кутырева М.П. и др. Наноразмерные материалы в составе биосенсоров для определения амитриптилина // Заводск. лаборатория. Диагностика материалов. 2021. Т. 87. № 9. С. 20. https://doi.org/10.26896/1028-6861-2021-87-9-20-29
  25. Khataee S., Dehghan G., Shaghaghi Z., Khataee A., Amini M. A novel bifunctional electrochemical nanosensor for simultaneous detection of glucose and insulin based on NiO/Co3O4@CuAl LDH-MWCNT nanocomposite-modified carbon paste electrode // Microchem. J. 2024. V. 201. Article 110644. https://doi.org/10.1016/j.microc.2024.110644
  26. Luo S., Wang G., Wang Y., Xu Y., Luo Y. Carbon nanomaterials enabled fiber sensors: A structure-oriented strategy for highly sensitive and versatile in situ monitoring of composite curing process // Composites. Part B. 2019. V. 166. P. 645. https://doi.org/10.1016/j.compositesb.2019.02.067
  27. Wang B., Duan Y., Xin Z., Yao X., Abliz D., Ziegmann G. Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin film infusion method // Compos. Sci. Technol. 2018. V. 158. P. 51. https://doi.org/10.1016/j.compscitech.2018.01.047
  28. Boztepe S., Liu H., Heide D., Thostenson E.T. Novel carbon nanotube interlaminar film sensors for carbon fiber composites under uniaxial fatigue loading // Compos. Struct. 2018. V. 189. P. 340. https://doi.org/10.1016/j.compstruct.2018.01.033
  29. Harsini M., Widyaningrum B.A., Fitriany E., Paramita D.R.A., Farida A.N., Baktir A. et al. Electrochemical synthesis of polymelamine/gold nanoparticle modified carbon paste electrode as voltammetric sensor of dopamine // Chin. J. Anal. Chem. 2022. V. 50. № 4. Article 100052. https://doi.org/10.1016/j.cjac.2022.100052
  30. Zhang Y., Du X., Mao J., He S., Cao Z. Facile preparation of gold nanoparticles anchored on layered yttrium hydroxide by electrochemical methods for enhanced sensing of hydroquinone and catechol // Mater. Chem. Phys. 2024. V. 311. Article 128526. https://doi.org/10.1016/j.matchemphys.2023.128526
  31. Wang J., Luo Z., Lin X. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice // Food Chem. 2023. V. 402. P. 134433. https://doi.org/10.1016/j.foodchem.2022.134433
  32. Song K.-H., Chen F.-L., Xu J.-T., Wang K.-Z., Feng X.-Z., Han G.-C., Kraatz H.-B. Composites of nano-flower copper nanoparticles and well dispersed multi-walled carbon nanotubes for the voltammetric detection of moxifloxacin in pork // Microchem. J. 2024. V. 201. Article 110631. https://doi.org/10.1016/j.microc.2024.110631
  33. Порфирьева А.В., Шибаева К.С., Евтюгин В.Г., Якимова Л.С., Стойков И.И., Евтюгин Г.А. Электрохимический ДНК-сенсор на доксорубицин на основе полиэлектролитного комплекса и аминированного тиакаликс[4]арена // Журн. аналит. химии. 2019. Т. 74. № 7. С. 542. (Porfir’eva A.V., Shibaeva K.S., Evtyugin V.G., Yakimova L.S., Stoikov I.I., Evtyugin G.A. An electrochemical DNA sensor for doxorubicin based on a polyelectrolyte complex and aminated thiacalix[4]arene // J. Anal. Chem. 2019. V. 74. P. 707. https://doi.org/10.1134/S1061934819070086)
  34. Stoikov D., Ivanov A., Shafigullina I., Gavrikova M., Padnya P., Shiabiev I. et al. Flow-through amperometric biosensor system based on functionalized aryl derivative of phenothiazine and PAMAM-calix-dendrimers for the determination of uric acid // Biosensors. 2024. V. 14. № 3. P. 120. https://doi.org/10.3390/bios14030120
  35. Zhang C., Zhang S., Jia Y., Li Y., Wang P., Liu Q. et al. Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO // Biosens. Bioelectron. 2019. V. 126. P. 785. https://doi.org/10.1016/j.bios.2018.11.039
  36. Zhang Z., Yang M., Wu X., Dong S., Zhu N., Gyimah E. et al. A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated single-walled carbon nanohorns as labels // Chemosphere. 2019. V. 225. P. 282. https://doi.org/10.1016/j.chemosphere.2019.03.033
  37. Datta S., Neerukatti R.K., Chattopadhyay A. Buckypaper embedded self-sensing composite for real-time fatigue damage diagnosis and prognosis // Carbon. 2018. V. 139. P. 353. https://doi.org/10.1016/j.carbon.2018.06.059
  38. Kumar V., Sharma S., Pathak A., Singh B.P., Dhakate S.R., Yokozeki T., Okada T., Ogasawara T. Interleaved MWCNT buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage // Compos. Struct. 2019. V. 210. P. 581. https://doi.org/10.1016/j.compstruct.2018.11.088
  39. Cheng X., Yokozeki T., Wang H., Wu L., Sun Q.-F. Simultaneous enhancement of electrical conductivity and mechanical properties in buckypaper-reinforced polydivinylbenzene(doped polyaniline) composites // Compos. Sci. Technol. 2018. V. 161. P. 50. https://doi.org/10.1016/j.compscitech.2018.03.042
  40. Alanazi A.H., Jurewicz I., Alyahyawi A., Alsubaie A., Hinder S., Bañuls-Ciscar J. et al. Novel dosimetric study of the sp2 to sp3 hybridisation ratio in free–standing carbon nanotubes buckypaper // Radiat. Phys. Chem. 2019. V. 154. P. 38. https://doi.org/10.1016/j.radphyschem.2018.02.006
  41. Ibragimova R.R., Burilov V.A., Aimetdinov A.R., Mironova D.A., Evtugyn V.G., Osin Y.N., Solovieva S.E. and Antipin I.S. Macroheterocycles. 2016. V. 9. N 4. P. 433. https://macroheterocycles.isuct.ru/en/mhc161180b
  42. Zhou J., Zhang C., Chen Y., Wang Z., Lan L., Wang Y. et al. A simple immunosensor for alpha-fetoprotein determination based on gold nanoparticles-dextran-reduced graphene oxide // J. Electroanal. Chem. 2019. V. 833. P. 126. https://doi.org/10.1016/j.jelechem.2018.11.036
  43. Liu P., Li C., Zhang R., Tang Q., Wei J., Lu Y., Shen P. An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy // Biosens. Bioelectron. 2019. V. 126. P. 543. https://doi.org/10.1016/j.bios.2018.10.048
  44. Fan Y., Shi S., Ma J., Guo Y. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125 // Biosens. Bioelectron. 2019. V. 135. P. 1. https://doi.org/10.1016/j.bios.2019.03.063
  45. Wang Z., Yang S., Wang Y., Feng W., Li B., Jiao J. et al. A novel oriented immunosensor based on AuNPs-thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples // Anal. Chim. Acta. 2020. V. 1140. P. 145. https://doi.org/10.1016/j.aca.2020.10.025
  46. Cheng Y., Gao J., Shi Q., Li Z., Huang W. In situ electrochemical reduced Au loaded black TiO2 nanotubes for visible light photocatalysis // J. Alloys Compd. 2022. V. 901. Article 163562. https://doi.org/10.1016/j.jallcom.2021.163562
  47. Медянцева, Э.П., Газизуллина Э.Р., Брусницын Д.В., Федоренко С.В., Мустафина А.Р., Еремин С.А. Определение амитриптилина методом поляризационного флуоресцентного иммуноанализа // Журн. аналит. химии. 2022. Т. 77. № 9. С. 828. https://doi.org/10.31857/S0044450222070088 (Medyantseva E.P., Gazizullina E.R., Brusnitsyn D.V., Fedorenko S.V., Mustafina A.R., Eremin S.A. Determination of amitriptyline by fluorescence polarization immunoassay // J. Anal. Chem. 2022. V. 77. № 9. P. 1147. https://doi.org/10.1134/s1061934822070085)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Циклические вольтамперограммы получения НЧAu на поверхности электрода: (а) 20 мВ/с, 10 циклов, ацетатный буферный раствор с рН 3.8; (б) 100 мВ/с, 10 циклов, ацетатный буферный раствор с рН 3.8; (в) 20 мВ/с, 10 циклов, ацетатный буферный раствор с рН 4.3.

Скачать (126KB)
3. Рис. 2. Циклические вольтамперограммы в ацетатном буферном растворе с рН 4.3 электрода, модифицированного ВГО/НЧAu в режиме: (а) циклической вольтамперометрии, V, мВ/с: 1 – 50; 2 – 100; 3 – 150; (б) хроноамперометрии, t = 60 с, 1 – 10 мВ/с; 2 – 25 мВ/с.

Скачать (128KB)
4. Рис. 3. Циклические вольтамперограммы в ацетатном буферном растворе с рН 4.3 электрода, модифицированного ГО-NH2/НЧAu в режиме: (а) циклической вольтамперометрии, V, мВ/с: 1 – 10; 2 – 25; 3 – 50; 4 – 125; 5 – 150; б) хроноамперометрии, t = 60 с, V, мВ/с: 1 – 10; 2 – 50; 3 – 100.

Скачать (170KB)
5. Рис. 4. Циклические вольтамперограммы в ацетатном буферном растворе с рН 3.8 электрода, модифицированного: (а) БУНТ 1/аминотиакаликс[4]арен(водн)/НЧAu: 1 – 10 мВ/с; 2 – 25 мВ/с; (б) БУНТ 1/аминотиакаликс[4]арен(водн.)/НЧAu: 1 – 10 мВ/с; 2 – 25 мВ/с; (в) БУНТ 1/аминотиакаликс[4]арен(хит.)/НЧAu: 25 мВ/с.

Скачать (125KB)
6. Рис. 5. АСМ-изображения в 3D проекциях поверхности электрода: (а) чистый электрод; (б) ВГО-хитозан; (в) ГО-NH2-хитозан; (г) НЧAu; (д) ВГО/НЧAu; (е) аминотиакаликс[4]арен/НЧAu.

Скачать (610KB)
7. Рис. 6. Циклические вольтамперограммы электродов с модификаторами: (а) ВГО/НЧAu на фоне ацетатного буферного раствора с рН 3.8 в присутствии Ат с разведением 1 : 50 (1), 1 : 200 (2), 1 : 100 (3); (б) ВГО/НЧAu на фоне ацетатного буферного раствора с рН 3.8 в присутствии Ат (3), амитриптилина с = 1 × 10–7 М (2), амитриптилина с = 1 × 10–5 М (1). Разведение Ат 1 : 200, V = 100 мВ/с.

Скачать (142KB)

© Российская академия наук, 2025