Photoinduced Dynamics of Spin Centers in Carbon-Modified Titanium Dioxide Nanotubes
- Autores: Kytina E.V.1, Savchuk T.P.1,2, Gavrilin I.M.2, Konstantinova E.A.1
- 
							Afiliações: 
							- Moscow State University
- National Research University of Electronic Technology
 
- Edição: Volume 68, Nº 3 (2023)
- Páginas: 419-425
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kld-journal.fedlab.ru/0044-457X/article/view/665296
- DOI: https://doi.org/10.31857/S0044457X22601201
- EDN: https://elibrary.ru/JBOVJY
- ID: 665296
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Arrays of titanium dioxide (TiO2) nanotubes with different chemical compositions have been synthesized; their structural properties have been studied, and the characteristics of spin centers (defects) have been determined. All samples have appeared to contain carbon. It has been established that the main type of spin centers in TiO2 nanotubes are dangling carbon bonds, and their concentration correlates with the carbon content in the obtained structures. Under illumination, a reversible increase in the concentration of defects occurs, which is caused by their photoinduced recharging in the process of impurity absorption. This process is accompanied by an increase in the concentration of photoexcited electrons in the conduction band. The originality and novelty of the work are determined by the development of a method for controlling the density of defects and, accordingly, the concentration of photoinduced electrons by thermal treatment of samples under various conditions. The results open up new possibilities for the development of photocatalysts based on titanium dioxide nanotubes with a controlled electron concentration in the conduction band that function in the visible range of the spectrum.
Palavras-chave
Sobre autores
E. Kytina
Moscow State University
														Email: wewillbe01@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
T. Savchuk
Moscow State University; National Research University of Electronic Technology
														Email: wewillbe01@gmail.com
				                					                																			                												                								119991, Moscow, Russia; 124498, Zelenograd, Moscow, Russia						
I. Gavrilin
National Research University of Electronic Technology
														Email: wewillbe01@gmail.com
				                					                																			                												                								124498, Zelenograd, Moscow, Russia						
E. Konstantinova
Moscow State University
							Autor responsável pela correspondência
							Email: wewillbe01@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
Bibliografia
- Dongmei He, Liyong Du, Keyan Wang et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1986. https://doi.org/10.1134/S0036023621130040
- Sadovnikov A.A., Nechaev E.G., Bel’tyukov A.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 460. https://doi.org/10.1134/S0036023621040197
- Dolganov A.V., Balandina A.V., Chugunov D.B. et al. // Russ. J. Gen. Chem. 2020. V. 90. P. 1229. https://doi.org/10.1134/S1070363220070099
- Jenny Schneider, Masaya Matsuoka, Masato Takeuchi et al. // Chem. Rev. 2014. V. 114. P. 9919. https://doi.org/10.1021/cr5001892
- Jingxiang Low, Jiaguo Yu, Mietek Jaroniec et al. // Adv. Mater. 2017. V. 29. № 20. P. 1601694. https://doi.org/10.1002/adma.201601694
- Martin Motola, Hanna Sopha, Miloš Krbal et al. // Electrochem. Commun. 2018. V. 97. № 1. P. 1. https://doi.org/10.1016/j.elecom.2018.09.015
- Кривобок В.С. // Письма в ЖЭТФ. 2020. Т. 112. № 8. С. 501. https://doi.org/10.31857/S1234567820200033
- Zubair M., Kim H., Razzaq A. et al. // J. CO2 Utiliz. 2018. V. 26. P. 70. https://doi.org/10.1016/j.jcou.2018.04.004
- Jaafar H., Ahmad Z.A., Ain M.F. et al. // Optik. 2017. V. 144. P. 91. https://doi.org/10.1016/j.ijleo.2017.06.097
- Zhao W., Liu S., Zhang S. et al. // Catal. Today. 2019. V. 337. P. 37. https://doi.org/10.1016/j.cattod.2019.04.024
- Tang T., Yin Z., Chen J. et al. // Chem. Eng. J. 2021. V. 417. P. 128058. https://doi.org/10.1016/j.cej.2020.128058
- Константинова Е.А., Миннеханов А.А., Кытина Е.В., Трусов Г.В. // Письма в ЖЭТФ. 2020. Т. 112. № 8. С. 562. https://doi.org/10.1134/S0021364020200060
- Wei Y., Huang Y., Fang Y. et al. // Mater. Res. Bull. 2019. V. 119. P. 110571. https://doi.org/10.1016/j.materresbull.2019.110571
- Xiao Y., Sun X., Li L. et al. // Chin. J. Catal. 2019. V. 40. № 5. P. 765. https://doi.org/10.1016/s1872-2067(19)63286-9
- So S., Riboni F., Hwang I. et al. // Electrochim. Acta. 2017. V. 231. P. 721. https://doi.org/10.1016/j.electacta.2017.02.094
- Motola M., Čaplovičová M., Krbal M. et al. // Electrochim. Acta. 2020. V. 331. P. 135374. https://doi.org/10.1016/j.electacta.2019.135374
- Kar P., Zeng S., Zhang Y. et al. // Appl. Catal. B: Environmental. 2019. V. 243. P. 522. https://doi.org/10.1016/j.apcatb.2018.08.002
- Savchuk T., Gavrilin I., Konstantinova E. et al. // Nanotechnology. 2021. V. 33. P. 055706. https://doi.org/10.1088/1361-6528/ac317e
- Gavrilin I., Dronov A., Volkov R. et al. // Appl. Surf. Sci. 2020. V. 516. P. 146120. https://doi.org/10.1016/j.apsusc.2020.146120
- Hu L., Huo K., Chen R. et al. // Anal. Chem. 2021. V. 83. P. 8138. https://doi.org/10.1021/ac201639m
- Zhi-Da Gao, Xu Zhu, Ya-Hang Li et al. // Chem. Commun. 2015. V. 51. P. 7614. https://doi.org/10.1039/c5cc00728c
- Yan-Yan Song, Ya-Hang Li, Jing Guo et al. // J. Mater. Chem. A. 2015. V. 3. P. 23754. https://doi.org/10.1039/c5ta05691h
- Zhao H., Pan F., Li Y. et al. // J. Materiomics. 2017. V. 3. P. 17. https://doi.org/10.1016/j.jmat.2016.12.001
- Wedland W., Hecht H. Reflectance Spectroscopy. N.Y.: Interscience, 1966.
- Minnekhanov A.A., Deygen D.M., Konstantinova E.A. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 333. https://doi.org/10.1186/1556-276X-7-333
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





