Влияние Fe3O4 на физико-химические и фотокаталитические свойства наноразмерного титаната бария
- Авторы: Иванов К.В.1, Плотвина А.В.2, Агафонов А.В.1
- 
							Учреждения: 
							- Институт химии растворов им. Г.А. Крестова РАН
- Ивановский государственный химико-технологический университет
 
- Выпуск: Том 68, № 1 (2023)
- Страницы: 133-144
- Раздел: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kld-journal.fedlab.ru/0044-457X/article/view/665343
- DOI: https://doi.org/10.31857/S0044457X22601134
- EDN: https://elibrary.ru/GVLHHB
- ID: 665343
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Предложена методика синтеза нанокомпозита на основе титаната бария, модифицированного добавками нанодисперсного магнетита, золь-гель методом в среде уксусной кислоты с последующим отжигом при температуре 800°С. Физико-химический анализ продуктов синтеза показал, что фазой матрицы после отжига является титанат бария с примесью карбоната бария, а помимо магнетита содержатся незначительные включения гематита и вюстита. С помощью энергодисперсионной рентгеновской спектроскопии определен элементный состав наноразмерных образцов. Показано влияние концентрации вводимого Fe3O4 на морфологический и фазовый состав композитов. Методом низкотемпературной адсорбции–десорбции азота определена удельная площадь поверхности и тип пористости прокаленных образцов. Изучено влияние порошков BaTiO3, BaTiO3/Fe3O4-1% и BaTiO3/Fe3O4‑10% на адсорбционную способность и фотокаталитическую активность в процессе деколорирования красителя родамина Б из водного раствора в темноте, а также под действием ультрафиолета. Кинетика адсорбции в темновой области и фотокаталитического разложения под действием ультрафиолета красителя родамина Б в водной суспензии полученных композитов проанализирована с помощью кинетических моделей псевдопервого и псевдовторого порядка.
Ключевые слова
Об авторах
К. В. Иванов
Институт химии растворов им. Г.А. Крестова РАН
														Email: ivk@isc-ras.ru
				                					                																			                												                								Россия, 153045, Иваново, ул. Академическая, 1						
А. В. Плотвина
Ивановский государственный химико-технологический университет
														Email: ivk@isc-ras.ru
				                					                																			                												                								Россия, 153000, Иваново, Шереметевский пр-т, 7						
А. В. Агафонов
Институт химии растворов им. Г.А. Крестова РАН
							Автор, ответственный за переписку.
							Email: ivk@isc-ras.ru
				                					                																			                												                								Россия, 153045, Иваново, ул. Академическая, 1						
Список литературы
- Drdlik D., Marak V., Maca K. et al. // Ceram. Int. 2022. V. 48. Issue 17. P. 24599. https://doi.org/10.1016/j.ceramint.2022.05.105
- Sasikumar S., Saravanakumar S., Asath Bahadur S. et al. // Optik (Stuttg). 2020. V. 206. P. 163752. https://doi.org/10.1016/j.ijleo.2019.163752
- Solís R.R., Bedia J., Rodríguez J.J. et al. // Chem. Eng. J. 2021. V. 409. P. 128110. https://doi.org/10.1016/j.cej.2020.128110
- Su Y.P., Sim L.N., Coster H.G.L. et al. // J. Memb. Sci. 2021. V. 640. P. 119861. https://doi.org/10.1016/j.memsci.2021.119861
- Ravanamma R., Muralidhara Reddy K., Venkata Krishnaiah K. et al. // Mater. Today Proc. 2021. V. 46. P. 259. https://doi.org/10.1016/j.matpr.2020.07.646
- Sandi D., Supriyanto A., Anif et al. // IOP Conf. Ser. Mater. Sci. Eng. 2016. V. 107. P. 012069. https://doi.org/10.1088/1757-899X/107/1/012069
- Dang N.V., Dung N.T., Phong P.T. et al. // Phys. B: Condens. Matter. 2015. V. 457. P. 103. https://doi.org/10.1016/j.physb.2014.09.046
- Lal M., Sharma P., Ram C. // Optik (Stuttg). 2021. V. 241. P. 166934. https://doi.org/10.1016/j.ijleo.2021.166934
- Senthilkumar P., Jency D.A., Kavinkumar T. et al. // ACS Sustain. Chem. Eng. 2019. P. Acssuschemeng.9b00679. https://doi.org/10.1021/acssuschemeng.9b00679
- Phoon B.L., Lai C.W., Juan J.C. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 28. P. 14316. https://doi.org/10.1016/j.ijhydene.2019.01.166
- Wang W.P., Yang H., Xian T. et al. // Adv. Sci. Eng. Med. 2012. V. 4. № 6. P. 479. https://doi.org/10.1166/asem.2012.1215
- Thamima M., Andou Y., Karuppuchamy S. // Ceram. Int. 2017. V. 43. № 1. P. 556. https://doi.org/10.1016/j.ceramint.2016.09.194
- Lee W.W., Chung W.-H., Huang W.-S. et al. // J. Taiwan Inst. Chem. Eng. 2013. V. 44. № 4. P. 660. https://doi.org/10.1016/j.jtice.2013.01.005
- Jiang X., Wang H., Wang X. et al. // Sol. Energy. 2021. V. 224. P. 455. https://doi.org/10.1016/j.solener.2021.06.032
- Tomar R., Prajapati R., Verma S. et al. // Mater. Today Proc. 2021. V. 34. P. 608. https://doi.org/10.1016/j.matpr.2020.01.543
- Liu K., Mi L., Wang H. et al. // Ceram. Int. 2021. V. 47. № 15. P. 22055. https://doi.org/10.1016/j.ceramint.2021.04.226
- Mohan H., Ramasamy M., Ramalingam V. et al. // J. Hazard. Mater. 2021. V. 412. P. 125330. https://doi.org/10.1016/j.jhazmat.2021.125330
- Rocha V.M. da S., Pereira M. de G., Teles L.R. et al. // Mater. Sci. Eng. B. 2014. V. 185. P. 13. https://doi.org/10.1016/j.mseb.2014.02.004
- Niculescu A.-G., Chircov C., Grumezescu A.M. // Methods. 2022. V. 199. P. 16. https://doi.org/10.1016/j.ymeth.2021.04.018
- Landfester K., Ramrez L.P. // J. Phys. Condens. Matter. 2003. V. 15. № 15. P. S1345. https://doi.org/10.1088/0953-8984/15/15/304
- Mishra P., Patnaik S., Parida K. // Catal. Sci. Technol. 2019. V. 9. № 4. P. 916. https://doi.org/10.1039/c8cy02462f
- Evdokimova O.L., Fedulova (Savicheva) A.D., Evdokimova A.V. et al. // Inorg. Mater. Appl. Res. 2020. V. 11. № 2. P. 371. https://doi.org/10.1134/S2075113320020100
- Agafonov A.V., Ivanov K.V., Davydova O.I. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 7. P. 1025. [Агафо-нов А.В., Иванов К.В., Давыдова О.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1087.]https://doi.org/10.1134/S0036023611070035
- Shendy S.A., Shahverdizadeh G.H., Babazadeh M. et al. // Silicon. 2020. V. 12. № 7. P. 1735. https://doi.org/10.1007/s12633-019-00252-z
- Bennett J.A., Parlett C.M.A., Isaacs M.A. et al. // ChemCatChem. 2017. V. 9. № 9. P. 1648. https://doi.org/10.1002/cctc.201601269
- Иванов К.В., Алексеева О.В., Агафонов А.В. // Неорган. материалы. 2020. Т. 56. № 5. С. 519. [Ivanov K.V., Alekseeva O.V., Agafonov A.V. // Inorg. Mater. 2020. V. 56. № 5. P. 494. https://doi.org/10.1134/S0020168520040068]https://doi.org/10.31857/S0002337X20040065
- Sardarian P., Naffakh-Moosavy H., Afghahi S.S.S. // J. Magn. Magn. Mater. 2017. V. 441. P. 257. https://doi.org/10.1016/j.jmmm.2017.05.074
- Alfredo Reyes Villegas V., Isaías De León Ramírez J., Hernandez Guevara E. et al. // J. Saudi Chem. Soc. 2020. V. 24. № 2. P. 223. https://doi.org/10.1016/j.jscs.2019.12.004
- Bell J.L.S., Palmer D.A., Barnes H.L. et al. // Geochim. Cosmochim. Acta. 1994. V. 58. № 19. P. 4155. https://doi.org/10.1016/0016-7037(94)90271-2
- Cui Y., Sun H., Briscoe J. et al. // Nanotechnology. 2019. V. 30. № 25. P. 255702. https://doi.org/10.1088/1361-6528/ab0b00
- Kim D.H., Lee S.J., Theerthagiri J. et al. // Chemosphere. 2021. V. 283. № June. P. 131218. https://doi.org/10.1016/j.chemosphere.2021.131218
- More S., Khedkar M.V., Kulkarni G.D. et al. // Optik (Stuttg). 2021. V. 247. P. 167913. https://doi.org/10.1016/j.ijleo.2021.167913
- Khalameida S., Sydorchuk V., Skubiszewska-Zięba J. et al. // J. Therm. Anal. Calorim. 2010. V. 101. № 2. P. 779. https://doi.org/10.1007/s10973-010-0755-3
- Mullens J., Van Werde K., Vanhoyland G. et al. // Thermochim. Acta. 2002. V. 392–393. P. 29. https://doi.org/10.1016/s0040-6031(02)00067-9
- Khirade P.P., Birajdar S.D., Raut A.V. et al. // Ceram. Int. 2016. V. 42. № 10. P. 12441. https://doi.org/10.1016/j.ceramint.2016.05.021
- Agafonov A.V., Ivanov K.V., Davydova O.I. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 7. P. 1025. [Агафонов А.В., Иванов К.В., Давыдова О.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1087.]https://doi.org/10.1134/S0036023611070035
- Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. P. 603. https://doi.org/https://doi.org/10.1515/iupac.57.0007
- Ivanov K.V., Noskov A.V., Alekseeva O.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 490. [Иванов К.В., Носков А.В., Алексеева О.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 464. https://doi.org/10.31857/S0044457X21040139]https://doi.org/10.1134/S0036023621040136
- Panthi G., Park M. // J. Energy Chem. 2022. V. 73. P. 160. https://doi.org/10.1016/j.jechem.2022.06.023
- Mohammed N., Grishkewich N., Berry R.M. et al. // Cellulose. 2015. V. 22. № 6. P. 3725. https://doi.org/10.1007/s10570-015-0747-3
- Alekseeva O.V., Noskov A.V., Agafonov A.V. // Cellulose. 2022. V. 29. P. 3947. https://doi.org/10.1007/s10570-022-04546-1
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 











