SOLVING NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND WITH DISCONTINUOUS KERNELS BY USING THE OPERATIONAL MATRIX METHOD

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A numerical method to solve the nonlinear Volterra integral equations of the first kind with discontinuous kernels is proposed. Usage of operational matrices for this kind of equation is a cost-efficient scheme. Shifted Legendre polynomials are applied for solving Volterra integral equations with discontinuous kernels by converting the equation to a system of nonlinear algebraic equations. The convergence analysis is given for the approximated solution and numerical examples are demonstrated to denote the precision of the proposed method.

Sobre autores

Simin Amirkhizi

Department of Mathematics, Tabriz Branch, Islamic Azad University

Email: stu.aghaei.s@iaut.ac.ir
Iran, Tabriz

Yaghoub Mahmoudi

Department of Mathematics, Tabriz Branch, Islamic Azad University

Email: mahmoudi@iaut.ac.ir
Iran, Tabriz

Ali Shamloo

Department of Mathematics, Shabestar Branch, Islamic Azad University

Autor responsável pela correspondência
Email: mahmoudi@iaut.ac.ir
Iran, Shabestar

Bibliografia

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Simin Aghaei Amirkhizi, Yaghoub Mahmoudi, Ali Salimi Shamloo, 2023