О чандлеровском периоде Венеры

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Проведено исследование чандлеровского колебания Венеры на основе землеподобных моделей планеты. Метод расчета периода чандлеровского колебания для Венеры протестирован на Земле. Для учета неупругости недр планеты применяется реология Андраде, и определены значения параметров реологической модели, которые могут объяснить наблюдаемый период чандлеровского колебания Земли. Получены прогностические оценки периода чандлеровского колебания Венеры. Для наиболее правдоподобных моделей внутреннего строения Венеры с радиусом ядра в интервале 3288±167 км период чандлеровского колебания составляет 30–48 тыс. лет. Большая погрешность в результатах связана, в основном, с большим разбросом возможных значений постоянной прецессии Венеры.

Full Text

Restricted Access

About the authors

D. O. Amorim

Московский физико-технический университет

Author for correspondence.
Email: amorim.dargilan@gmail.com
Russian Federation, Москва

Т. В. Гудкова

Институт физики Земли им. О.Ю. Шмидта РАН

Email: gudkova@ifz.ru
Russian Federation, Москва

References

  1. Жарков В.Н., Гудкова Т.В. О параметрах землеподобной модели Венеры // Астрон. вестн. 2019. Т. 53. № 1. С. 3– 6. (Zharkov V.N., Gudkova T.V. On parameters of the Earth-like model of Venus // Sol. Syst. Res. 2019. V. 53. № 1. P. 1–4.)
  2. Молоденский С.М., Жарков В.Н. О чандлеровском колебании и частотной зависимости Q μ мантии Земли // Изв. АН СССР. Физика Земли. 1982. Т. 4. С. 3–16.
  3. Ландау Л.Д., Лифшиц Е.М. Механика. М.: Наука, 1988. 216 с.
  4. Amorim D.O., Гудкова Т.В. Внутреннее строение Венеры на основе модели PREM // Астрон. вестн. 2023. Т. 57. № 5. С. 403–414. (Amorim D.O., Gudkova T.V. Internal structure of Venus based on the PREM model // Sol.Syst. Res. 2023. V. 57. № 5. P. 414–425.)
  5. Amorim D.O., Gudkova T.V. Constraining Earth's mantle rheology with Love and Shida numbers at the M2 tidal frequency // Phys. Earth and Planet. Interiors. 2024a. V. 347. Id. 107144.
  6. Amorim D.O., Gudkova T.V. Earth-like models of the interior structure of Venus // Sol. Syst. Res. 2024b. V. 58. № 6.
  7. Cascioli G., Hensley S., De Marchi F., Breuer D., Durante D., Racioppa P., Iess L., Mazarico E., Smrekar S.E. The determination of the rotational state and interior structure of Venus with VERITAS // The Planet. Sci. J. 2021. V. 2. P. 220–231.
  8. Chen W., Chen Y., Ray J., Luo J., Cheng Li J. Free decay and excitation of the Chandler wobble: Self-consistent estimates of the period and quality factor // J. Geodesy. 2023. V. 97. Id. 36.
  9. Cottereau L., Souchay J. Rotation of rigid Venus: a complete precession-nutation model // Astron. and Astrophys. 2009. V. 507. P. 1635–1648.
  10. Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Phys. Earth and Planet. Interiors. 1981. V. 25 (4). P. 297–356.
  11. James P.B., Zuber M.T., Phillips R.J. Crustal thickness and support of topography on Venus // J. Geophys. Res.: Planets. 2013. V. 118. P. 859–875.
  12. Jiménez-Díaz A., Ruiz J., Kirby J.F., Romeo I., Tejero R., Capote R. Lithopsheric structure of Venus from gravity and topography // Icarus. 2015. V. 260. P. 215–231.
  13. Konopliv A.S., Yoder C.F. Venusian k 2 tidal Love number from Magellan and PRO tracking data // Geophys. Res. Lett. 1996. V. 23 (14). P. 1857–1860.
  14. Konopliv A.S., Park R.S., Rivoldini A., Baland R.M., Le Maistre S., Van Hoolst T., Yseboodt M., Dehant V. Detection of the Chandler wobble of Mars from orbiting spacecraft // Geophys. Res. Lett. 2020. V. 47. Id. e2020GL090568.
  15. Liu C., Huang C., Zhang M. The principal moments of inertia calculated with the hydrostatic equilibrium figure of the Earth // Geodesy and Geodyn. 2017. V. 8. P. 201–205.
  16. Margot J.-L., Campbell D.B., Giorgini J.D., Jao J.S., Snedeker L.G., Ghigo F.D., Bonsall A. Spin state and moment of inertia of Venus // Nature Astron. 2021. V. 5 (7). P. 676–683.
  17. Molodensky M.S. The theory of nutation and diurnal Earth tides // Comm. Obs. Roy. Belgique. 1961. V. 188. S. Geophys. № 58. P. 25–56.
  18. Rosenblatt P., Dumoulin C., Marty J.-C., Genova A. Determination of Venus’ interior structure with EnVision // Remote Sens. 2021. V. 13. Id. 1624.
  19. Saliby C., Fienga A., Briaud A., Memin A., Herrera C. Viscosity contrasts in the Venus mantle from tidal deformations // Planet. and Space Sci. 2023. V. 231. Id. 105677.
  20. Shen M., Zhang C.Z. The dynamical flattenings of Mercury and Venus // Earth, Moon, and Planets. 1988. V. 41. P. 289–294.
  21. Smrekar S.E., Davaille A., Sotin C. Venus interior structure and dynamics // Space Sci. Rev. 2018. V. 214. P. 1–34.
  22. Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., and 24 co-authors, and SciPy 1.0 contributors. SciPy 1.0: fundamental algorithms for scientific computing in Python // Nature methods. 2020. V. 17. P. 261–272.
  23. Yang A., Huang J., Wei D. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus // Planet. and Space Sci. 2016. V. 129. P. 24–31.
  24. Zharkov V.N., Molodensky S.M. On the Chandler wobble of Mars // Planet. and Space Sci. 1996. V. 44. P. 1457–1462.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of model values ​​of the period of the Earth's Chandler TCW with the observed value from (Chen et al., 2023). For each value of the rheological parameter α, the TCW period is calculated for two values ​​of the precession constant (Hmin and Hmax) and two viscosity profiles (LVP and HVP). Models with α = 0.09–0.11 fall within the range of observed values.

Download (110KB)
3. Fig. 2. Comparison of model values ​​of the Earth's Love number k2 with the estimate from (Chen et al., 2023). The Love number k2 is calculated over the period of the Chandler oscillation TCW for two values ​​of the precession constant (Hmin and Hmax) and two viscosity profiles (LVP and HVP) for each value of the rheological parameter α. Models with α = 0.10–0.12 satisfy the k2 value from (Chen et al., 2023).

Download (111KB)
4. Fig. 3. Model values ​​of the period of the Chandler wobble of Venus TCW for different combinations of the core radius Rc, precession constant H and parameter B. The TCW values ​​lie in the range from 30 to 48 thousand years. The main part of the error is caused by the uncertainty of the precession constant of Venus. Dashed lines highlight the range of the most probable models of the internal structure of Venus according to (Amorim, Gudkova, 2024b).

Download (146KB)
5. Fig. 4. Model values ​​of the tidal Love number k2 of Venus during the period of the Chandler oscillation TCW. Dashed lines highlight the interval of the most probable models of Venus according to (Amorim, Gudkova, 2024b).

Download (135KB)

Copyright (c) 2024 The Russian Academy of Sciences