Stark effect in MoSe2 monolayer heterostructure
- Авторлар: Chernenko A.V.1, Brichkin A.S.1, Golyshkov G.M.1
-
Мекемелер:
- Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences
- Шығарылым: Том 88, № 2 (2024)
- Беттер: 241-246
- Бөлім: New Materials and Technologies for Security Systems
- URL: https://kld-journal.fedlab.ru/0367-6765/article/view/654757
- DOI: https://doi.org/10.31857/S0367676524020132
- EDN: https://elibrary.ru/RRLNPU
- ID: 654757
Дәйексөз келтіру
Аннотация
The effect of a vertical electric field on photoluminescence of a MoSe2 monolayer encapsulated with hexagonal boron nitride is investigated. In the spectra, there is a quadratic shift of the photoluminescence lines of excitons and trions from the applied potential difference, as well as a change in their intensity. It is found that the magnitude of the Stark shift significantly exceeds the theoretically predicted one. It is found that the energy distance between the trion and exciton lines in the spectra varies with the magnitude of the external field, which is due to the dependence of the density of free charge carriers in the monolayer on the field. This effect made it possible to determine the density of free charge carriers in the monolayer, which varies with the field and lies in the range from 0.3–3.4⋅1012 cm–2.
Толық мәтін

Авторлар туралы
A. Chernenko
Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: chernen@issp.ac.ru
Ресей, Chernogolovka
A. Brichkin
Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences
Email: chernen@issp.ac.ru
Ресей, Chernogolovka
G. Golyshkov
Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences
Email: chernen@issp.ac.ru
Ресей, Chernogolovka
Әдебиет тізімі
- Ross J.S., Wu S., Wu H. et al. // Nature Commun. 2013. V. 4. P. 1474.
- Roch J.G., Leisgang N., Froehlicher G. et al. // Nano Lett. 2018. V. 18. P. 1070.
- Klein J., Wierzbowsk J., Regler A. et al. // Nano Lett. 2018. V. 18. P. 1070.
- Abraham N., Watanabe K., Taniguchi T., Majumdar K. // Phys. Rev. B. 2021. V. 103. No. 7. Art. No. 075430.
- Бричкин А.С., Голышков Г.М., Черненко А.В. // ЖЭТФ. 2023. Т. 163. P. 852; Brichkin A.S., Golyshkov G.M., Chernenko A.V. // JETP. 2023. V. 136. P. 760.
- Miller D.A.B., Chemla D.S., Damen T.C. et al. // Phys. Rev. B. 1985. V. 32. P. 1043.
- Pederson T.G. // Phys. Rev. B. 2016. V. 94. Art. No. 125424.
- Laturia A.M., Van de Put M., Vandenberghe W. et al. // NPJ2D Mater. Appl. 2018. V. 2. Art. No. 6.
- Chernikov A., van der Zande M.A., Hill H.M. et al. // Phys. Rev. Lett. 2015. V. 115. No. 2. Art. No. 126802.
- Sup Choi M., Lee G.H., Yu Y.J. et al. // Nature Commun. 2013. V. 4. P. 1624.
- Wang H., Wu Y., Cong C. et al. // ASC Nano. 2010. V. 4. P. 7221.
- Epping A., Banszerus L., Guettinger J. // J. Phys. Cond. Matter. 2018. V. 30. Art. No. 205001.
- Ju L., Velasco J., Huang E. et al. // Nature Nanotechnol. 2014. V. 9. P. 348.
- Lochmann T., von Klitzing K., Smet J.H. // Nano Lett. 2009. V. 9. P. 1973.
Қосымша файлдар
