Simulation and selection of the optimal experimental conditions to determine the low-energy parameters of the np interaction in the nd breakup reaction at a neutron energy of 5 MeV
- Autores: Kasparov A.A.1, Mordovskoy M.V.1, Afonin A.A.1, Tsvetkovich D.G.1
-
Afiliações:
- Institute for Nuclear Research of the Russian Academy of Sciences
- Edição: Volume 88, Nº 8 (2024)
- Páginas: 1209-1213
- Seção: Fundamental problems and applications of physics of atomic nucleus
- URL: https://kld-journal.fedlab.ru/0367-6765/article/view/676727
- DOI: https://doi.org/10.31857/S0367676524080097
- EDN: https://elibrary.ru/ORBBFQ
- ID: 676727
Citar
Resumo
An experiment to determine the low-energy parameters of np interaction in the nd breakup reaction at a neutron energy of 5 MeV of the RADEX channel of the INR RAS is proposed. The energy of the virtual 1S0 state and the np scattering length can be obtained from the experimental dependence of the reaction yield on the relative energy of motion of the “breakup” neutron and proton in the kinematic region, where the np interaction in the final state is most pronounced. The reaction events were simulated, based on which the optimal conditions for the future experiment were selected.
Sobre autores
A. Kasparov
Institute for Nuclear Research of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: kasparov200191@gmail.com
Rússia, Moscow, 117312
M. Mordovskoy
Institute for Nuclear Research of the Russian Academy of Sciences
Email: kasparov200191@gmail.com
Rússia, Moscow, 117312
A. Afonin
Institute for Nuclear Research of the Russian Academy of Sciences
Email: kasparov200191@gmail.com
Rússia, Moscow, 117312
D. Tsvetkovich
Institute for Nuclear Research of the Russian Academy of Sciences
Email: kasparov200191@gmail.com
Rússia, Moscow, 117312
Bibliografia
- Machleidt R., Sammarruca F., Song Y. // Phys. Rev. C. 1996. V. 53. No. 4. Art. No. R1483.
- Stoks V.G.J., Klomp R.A.M., Terheggen C.P.F. et al. // Phys. Rev. C. 1994. V. 49. No. 6. Art. No. 2950.
- Miller G.A., Nefkens B.M.K., Slaus I. // Phys. Reports. 1990. V. 194. No. 1—2. P. 1.
- Dumbrajs O., Koch R., Pilkuhn H. et al. // Nucl. Phys. B. 1983. V. 216. No. 277. P. 277.
- Gonzalez Trotter D.E., Salinas F., Chen Q. et. al. // Phys. Rev. Lett. 1999. V. 83. No. 19. P. 3788.
- Huhn V., Watzold L., Weber Ch. et al. // Phys. Rev. C. 2000. V. 63. No. 1. Art. No. 014003.
- Gonzalez Trotter D.E., Salinas Meneses F., Tornow W. et al. // Phys. Rev. C. 2006. V. 73. No. 3. Art. No. 034001.
- von Witsch W., Ruan X., Witala H. // Phys. Rev. C. 2006. V. 74. No. 1. Art. No. 014001.
- Конобеевский Е.С., Бурмистров Ю.М., Зуев С.В. и др. // Ядерн. физика. 2010. Т. 73. № 8. С. 1343; Konobeevski E.S., Burmistrov Yu.M., Zuyev S.V. et al. // Phys. Atom. Nucl. 2010. V. 73. No. 8. P. 1302.
- Конобеевский Е.С., Афонин А.А., Зуев С.В. и др. // Ядерн. физика. 2020. Т. 83. № 4. С. 288; Konobeevski E.S., Afonin A.A., Zuyev S.V. et al. // Phys. Atom. Nucl. 2020. V. 83. No. 4. P. 523.
- Конобеевский Е.С., Каспаров А.А., Мордовской М.В. и др. // Ядерн. физика. 2022. Т. 85. № 3. С. 216; Konobeevski E.S., Kasparov A.A., Mordovskoy M.V. et al. // Phys. Atom. Nucl. 2022. V. 85. No. 3. P. 289.
- Konobeevski E., Kasparov A., Mordovskoy M. et al. // Few-Body Syst. 2017. V. 58. Art. No. 107.
- Конобеевский Е.С., Зуев С.В., Каспаров A.A. и др. // Ядерн. физика. 2018. Т. 85. № 5. С. 555; Konobeevski E.S., Zuyev S.V., Kasparov A.A. et al. // Phys. Atom. Nucl. 2018. V. 81. No. 5. P. 595.
- Каспаров А.А., Мордовской М.В., Афонин А.А. и др. // Ядерн. физика. 2023. Т. 86. № 1. С. 245; Kasparov A.A., Mordovskoy M.V., Afonin A.A. et al. // Phys. Atom. Nucl. 2023. V. 86. No. 1. P. 44.
- Зуев С.В., Каспаров А.А., Конобеевский Е.С. // Изв. РАН. Сер. физ. 2017. Т. 81. № 6. С. 753; Zuyev S.V., Kasparov A.A., Konobeevski E.S. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 6. P. 679.
- Мигдал А.Б. // ЖЭТФ. 1955. Т. 28. № 1. С. 10; Migdal A.B. // JETP. 1955. V. 1. No. 1. P. 2.
- Watson K.M. // Phys. Rev. 1952. V. 88. No. 5. P. 1163.
Arquivos suplementares
