Dynamical modelling of clustering in multimodal heavy nuclei fission

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The authors consider the problem of describing theoretically the dynamics of nucleon clustering inside a fissile nucleus. The approach is based on the microscopic modeling of clustering as a new type of collective particle motion. The use of a dynamic clustering algorithm in the region of heavy nuclei requires effective multiparticle interaction to be developed for a distributed microscopic model. Calculations are performed for a double magic cluster that plays an important role in the formation of the second minimum of the fission barrier observed in the multimodal fission of heavy nuclei.

Sobre autores

Y. Ivanskiy

Saint-Petersburg State University

Email: a.unzhakova@spbu.ru
Rússia, St Petersburg, 199034

A. Unzhakova

Saint-Petersburg State University

Autor responsável pela correspondência
Email: a.unzhakova@spbu.ru
Rússia, St Petersburg, 199034

Bibliografia

  1. Bender M., Bernard R., Bertsch G. et al. // J. Physics G. 2020. V. 47. No. 11. Art. No. 113002.
  2. Schunck N., Regnier D. // Progr. Part. Nucl. Phys. 2022. V. 125. Art. No. 103963.
  3. Möller P., Madland D.G., Sierk A.J., Iwamoto A. // Nature. 2001. V. 409. P. 785.
  4. Möller P., Sierk A.J., Ichikawa T. et al. // Phys. Rev. C. 2009. V. 79. Art. No. 064304.
  5. Pashkevich V., Pyatkov Y., Unzhakova A. // Int. J. Mod. Phys. E. 2009. V. 18. P. 907.
  6. Zdeb A., Warda M., Robledo L.M. // Phys. Rev. C. 2021. V. 104. Art. No. 014610.
  7. Pyatkov Yu.V., Pashkevich V.V., Penionzhkevich Yu.E. et al. // Nucl. Phys. A. 1997. V. 624. P. 140.
  8. Pyatkov Y., Kamanin D., Alexandrov A. et al. // Phys. Rev. C. 2017. V. 96. Art. No. 064606.
  9. Kamanin D.V., Pyatkov Yu. V., Solodov A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 8. P. 1238.
  10. Pyatkov Yu. V., Kamanin D.V., Carjan N. et al. // J. Phys. Conf. Ser. 2023. V. 2586. Art. No. 012038.
  11. Vicsek T., Czirok A., Ben-Jacob E. et al. // Phys. Rev. Lett. 1995. V. 75. No. 6. P. 1226.
  12. Saber R.O., Murray R.M. // Proc. Amer. Control Conf. 2003. P. 951.
  13. Nouhi B., Darabi N., Sareh P. et al. // Sci. Reports. 2022. V. 12. Art. No. 12396.
  14. Friedkin N.E., Proskurnikov A.V., Tempo R., Parsegov S.E. // Science. 2016. V. 354(6310). P. 321.
  15. Amelin K., Amelina N., Granichin O. et al. // IEEE CCTA. 2019. P. 355.
  16. Erofeeva V., Kizhaeva N. // CAP. 2023. V. 12(1). P. 16.
  17. Amelina N., Chernov A., Granichin O., Ivanskiy Y., Len I. // Proc. 18th ECC2020. (Russia, 2020). P. 906.
  18. Унжакова А.В., Иванский Ю.В. // Изв. РАН. Сер. физ. 2022. T. 86. № 9. C. 1339; Ivanskiy Y.V., Unzhakova A.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1108.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024