Limits of laser cooling of light alkaline metals in polychromatic light field

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A model has been developed for laser cooling of alkali atoms in a polychromatic field, considering the real structure of atomic levels. The model was tested on the example of the 6Li atom. The minimum achievable temperatures of laser cooling of light alkali atoms are studied for different polarizations of the light field components, and the possibility of cooling below the Doppler limit is shown.

全文:

受限制的访问

作者简介

R. Ilenkov

Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ilenkov.roman@gmail.com
俄罗斯联邦, Novosibirsk

O. Prudnikov

Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University Novosibirsk

Email: ilenkov.roman@gmail.com
俄罗斯联邦, Novosibirsk; Novosibirsk

A. Taichenachev

Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University Novosibirsk

Email: ilenkov.roman@gmail.com
俄罗斯联邦, Novosibirsk; Novosibirsk

V. Yudin

Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University Novosibirsk

Email: ilenkov.roman@gmail.com
俄罗斯联邦, Novosibirsk; Novosibirsk

参考

  1. Ludlow A.D., Boyd M.M., Ye J. et al. // Rev. Mod. Phys. 2015. V. 87. No. 2. P. 637.
  2. Тайченачев А.В., Юдин В.И., Багаев С.Н. // УФН. 2016. Т. 186. № 2. С. 193; Taichenachev A.V., Yudin V.I., Bagaev S.N. // Phys. Usp. 2016. V. 59. No. 2. P. 184.
  3. Marti G.E., Hutson R.B., Goban A. et al. // Phys. Rev. Lett. 2018. V. 120. No. 10. Art. No. 103201.
  4. Cornell E.A., Wieman C.E. // Rev. Mod. Phys. 2002. V. 74. No. 3 P. 875.
  5. Ketterle W. // Rev. Mod. Phys. 2002. V. 74. No. 4. P. 1131.
  6. Турлапов А.В. // Письма в ЖЭТФ. 2012. Т. 95. № 2. С. 104; Turlapov A.V. // JETP Lett. 2012. V. 95. No. 2. P. 96.
  7. Bongs K., Holynski M., Vovrosh J. et al. // Nature Rev. Phys. 2019. V. 1. No. 12. P. 731.
  8. Dang H.B., Maloof A.C., Romalis M.V. // Appl. Phys. Lett. 2010. V. 97. No. 15. Art. No. 151110.
  9. Рябцев И.И., Колачевский Н.Н., Тайченачев А.В. // Квант. электрон. 2021. Т. 51. № 6. С. 463; Ryabtsev I.I., Kolachevsky N.N., Taichenachev A.V. // Quantum Electron. 2021. V. 51. No. 6. P. 463.
  10. Колачевский Н.Н., Хабарова К.Ю., Заливако И.В. и др. // Ракетно-косм. приборостр. и информ. сист. 2018. Т. 5. № 1. С. 13; Kolachevsky N.N., Khabarova K.Yu., Zalivako I.V. et al. // Rocket-Space Device Eng. Inform. Syst. 2018. V. 5. No. 1. P. 12.
  11. Minogin V.G., Letokhov V.S. Laser light pressure on atoms. New York: Gordon and Breach, 1987.
  12. Kazantsev A.P., Surdutovich G.I., Yakovlev V.P. Mechanical action of light on atoms. Singapore: World Scientific, 1990. 380 p.
  13. Metcalf H.J., Van der Straten P. Laser cooling and trapping. New York: Springer, 1990. 340 p.
  14. Dalibard J., Cohen-Tannoudji C. // J. Physics B. 1985. V. 18. No. 8. P. 1661.
  15. Javanainen J. // Phys. Rev. A. 1991. V. 44. No. 9. P. 5857.
  16. Dalibard J., Cohen-Tannoudji C. // J. Opt. Soc. Amer. B. 1989. V. 6. No. 11. P. 2023.
  17. Прудников О.Н., Тайченачев А.В., Тумайкин А.М., Юдин В.И. // ЖЭТФ. 1999. Т. 115. № 3. С. 791; Prudnikov O.N., Taichenachev A.V., Tumaikin A.M., Yudin V.I. // JETP. 1999. V. 88. No. 3. P. 433.
  18. Кирпичникова А.А., Прудников О.Н., Ильенков Р.Я. и др. // Квант. электрон. 2020. Т. 50. № 10. С. 939; Kirpichnikova A.A., Prudnikov O.N., Il’enkov R. Ya. et al. // Quantum Electron. 2020. V. 50. No. 10. P. 939.
  19. Riedmann M., Kelkar H., Wübbena T. et al. // Phys. Rev. A. 2012. V. 86. No. 4. Art. No. 043416.
  20. Hobson R., Bowden W., Vianello A. et al. // Phys. Rev. A. 2020. V. 101. No. 1. Art. No. 013420.
  21. Прудников О.Н., Тайченачев А.В., Юдин В.И. // Письма в ЖЭТФ. 2015. Т. 102. № 9. С. 660; Prudnikov O.N., Taichenachev A.V., Yudin V.I. // JETP Lett. 2015. V. 102. No. 9. P. 576.
  22. Kalganova E., Prudnikov O., Vishnyakova G. et al. // Phys. Rev. A. 2017. V. 96. No. 3. Art. No. 033418.
  23. Питаевский Л.П. // УФН. 1998. Т. 168. № 6. С. 641; Pitaevskii L.P. // Phys. Usp. 1998. V. 41. No. 6. P. 569.
  24. Каган М.Ю., Турлапов А.В. // УФН. 2019. Т. 189. № 3. С. 225; Kagan M.Yu., Turlapov A.V. // Phys. Usp. 2019. V. 62. No. 3. P. 215.
  25. Lin Z., Shimizu K., Zhan M. et al. // Japan. J. Appl. Phys. 1991. V. 30. No. 7B. Art. No. L1324.
  26. Burchianti A., Valtolina G., Seman J.A. et al. // Phys. Rev. A. 2014. V. 90. No. 4. Art. No. 043408.
  27. Mosk A., Jochim S., Moritz H. et al. // Opt. Lett. 2001. V. 26. No. 23. P. 1837.
  28. Grier A.T., Ferrier-Barbut I., Rem B.S. et al. // Phys. Rev. A. 2013. V. 87. No. 6. Art. No. 063411.
  29. Ильенков Р.Я., Кирпичникова А.А., Прудников О.Н. // Квант. электрон. 2022. Т. 52. № 2. С. 137; Il’enkov R.Ya., Kirpichnikova A.A., Prudnikov O.N. // Quantum Electron. 2022. V. 52. No. 2. P. 137.
  30. Yoo S.M., Javanainen J. // Phys. Rev. A. 1992. V. 45. No. 5. P. 3071.
  31. Прудников О.Н., Тайченачев А.В., Тумайкин А.М., Юдин В.И. // ЖЭТФ. 2004. Т. 125. № 3. С. 499; Prudnikov O.N., Taichenachev A.V., Tumaikin A.M., Yudin V.I. // JETP. 2004. V. 98. No. 3. P. 438.
  32. Безвербный А.В., Прудников О.Н., Тайченачев А.В. и др. // ЖЭТФ. 2003. Т. 123. № 3. С. 437; Bezverbnyi A.V., Prudnikov O.N., Taichenachev A.V. et al. // JETP. 2003. V. 96. No. 3. P. 383.
  33. Chang S., Minogin V. // Phys. Rep. 2002. V. 365. No. 2. P. 65.
  34. Adams C.S., Riis E. // Progr. Quantum. Electron. 1997. V. 21. No. 1. P. 1.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Atomic structure of 6Li atoms.

下载 (106KB)
3. Fig. 2. Dependences of dissipative light forces on the velocity of atoms: (a) field parameters S2 = S1 = 0.1, δ2 = δ1 = –1γ. Doppler effects lead to cooling for all velocities; (b) field parameters S2 = 1, S1 = 0.1, δ2 = δ1 = 3γ. Doppler effects lead to heating of atoms, but the presence of sub-Doppler friction mechanisms allows for the cooling of atoms at low velocities.

下载 (117KB)
4. Fig. 3. The value in ℏγ units for different polarization configurations of weak cooling light fields: (a) σ+ — σ is the polarization for both components of the bichromatic field; (b) the polarization for both components of the bichromatic field; (c) σ+ — σ is the polarization of the field resonant with the D2 line, the polarization of the field resonant with the D1 line; (d) the polarization of the field resonant with the D2 line, σ+ — σ is the polarization of the field resonant with the D1 line; problem parameters: S2 = S1 =0.1.

下载 (606KB)
5. Fig. 4. The value in ℏγ units for different polarization configurations of strong cooling light fields: (a) σ+ — σ is the polarization for both components of the bichromatic field; (b) the polarization for both components of the bichromatic field; (c) σ+ — σ is the polarization of the resonant D2-line field, the polarization of the resonant D1-line field; (d) the polarization of the resonant D2-line field, σ+ — σ is the polarization of the resonant D1-line field; problem parameters: S2 = S1 =1.

下载 (795KB)
6. Fig. 5. The value in ℏγ units for different intensities of cooling light fields: (a) σ+ — σ is the polarization for both components of the bichromatic field, S2 = 0.1, S1 = 1; (b) the polarization for both components of the bichromatic field, S2 = 0.1, S1 = 1; (c) σ+ — σ is the polarization for both components of the bichromatic field, S2 = 1, S1 = 0.1; (d) the polarization for both components of the bichromatic field, S2 = 1, S1 = 0.1.

下载 (704KB)

版权所有 © Russian Academy of Sciences, 2024