Rivulet of a Non-Newtonian Fluid Draining on an Inclined Superhydrophobic Surface

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A rivulet of a power-law-rheology fluid steadily draining from a point source on an inclined superhydrophobic plane is considered. An equation for the shape of the cross section of the rivulet has been derived in the thin layer approximation with the inhomogeneous slip boundary condition (slip coefficients are power functions of the spatial coordinates). Under the assumption that the rivulet is symmetric with respect to its middle plane, the conditions for the existence of a class of self-similar solutions of one ordinary differential equation of the second order have been determined. For some slip parameters of the superhydrophobic surface and some rheological indices of the draining fluid, analytical and numerical solutions from the found class have been constructed and the shape of the cross section of the rivulet and the geometry of the wetting spot have been analyzed.

作者简介

A. Ageev

Institute of Mechanics, Moscow State University

Email: aaiageev@mail.ru
Moscow, 119192 Russia

A. Osiptsov

Institute of Mechanics, Moscow State University

编辑信件的主要联系方式.
Email: osiptsov@imec.msu.ru
Moscow, 119192 Russia

参考

  1. J. Jeevahan, M. Chandrasekaran, G. Britto Joseph, R. B. Durairaj, and G. Mageshwaran, J. Coating Technol. Res. 15, 231 (2018).
  2. А. И. Агеев, А. Н. Осипцов, Коллоидный журнал 84(4), 380 (2022).
  3. А. И. Агеев, А. Н. Осипцов, Изв. РАН, Механика жидкости и газа 6, 35 (2015).
  4. S. Patlazhan and S. Vagner, Phys. Rev. E 96, 013104 (2017).
  5. G. G. Pereira, J. Non-Newton. Fluid Mech. 157, 197 (2009).
  6. L. L. Ferras, J. M. Nobrega, and F. T. Pinho, J. Non-Newton. Fluid Mech. 175, 76 (2012).
  7. S. Chakraborty, T.W.-H. Sheu, and S. Ghosh, Phys. Fluids 31, 013102 (2019).
  8. V. M. Starov, A. N. Tyatyushkin, M. G. Velarde, and S. A. Zhdanov, J. Colloid Interface Sci. 257, 284 (2003).
  9. V. D. Federico, S. Malavasi, and S. Cintoli, Meccanica 41, 207 (2006).
  10. S. K. Wilson, B. R. Du y, and R. Hunt, Q. J. Mech. Appl. Math. 55(3), 385 (2002).
  11. F. H. H. Al Mukahal, S. K. Wilson, and B. R. Du y, J. Non-Newton. Fluid Mech. 224, 30 (2015).
  12. Е. А. Веденеева, Изв. РАН, Механика жидкости и газа 1, 19 (2021).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023