Рождение морфомеханики

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В начале 1970-х в СССР Л.В. Белоусов и его коллеги выдвигают гипотезу о возможной роли механических сил и напряжений в организации развивающихся живых систем. Авторы открыли стадио-специфические паттерны механических напряжений в эмбриональном развитии амфибий и показали в дальнейшем, что механические напряжения необходимы для организации морфогенеза и клеточных дифференцировок. В результате многолетней работы коллектива эмбриологов под руководством Л.В. Белоусова рождается новая междисциплинарная наука на стыке биологи развития и механики – морфомеханика. В XXI в. происходит активное изучение механизмов механозависимой экспрессии генов, клеточной и ядерной механотрансдукции. Идея об организующей роли механических сил и напряжений в живых системах продолжает быть актуальной.

Об авторах

А. С. Ермаков

Московский государственный университет, биологический факультет, кафедра эмбриологии; Институт биологии развития РАН; Институт биоинженерии им. К.Г. Скрябина, Группа РНК-эпигенетики и механизмов геномной стабильности

Автор, ответственный за переписку.
Email: ermakov99@mail.ru
Россия, 119991, Москва, Ленинские Горы, 1/12; Россия, 119334, Москва, Вавилова, 26; Россия, 117312, Москва, Пр. 60-летия Октября, 7/1

Список литературы

  1. Белоусов Л.В. Основы общей эмбриологии. М.: Издательство Московского Государственного Университета: Наука, 2005. 368 с.
  2. Белоусов Л.В., Дорфман Я.Г., Черданцев В.Г. Быстрые изменения формы и клеточной архитектуры изолированных фрагментов эмбриональных тканей амфибий как экспериментальная модель морфогенеза // Онтогенез. 1974. Т. 5. № 4. С. 323–333.
  3. Белоусов JI.B., Лучинская Н.Н., Зарайский А.Г. Тензотаксис – коллективное движение эмбриональных клеток вверх по градиентам механических натяжений // Онтогенез. 1999. Т. 30. С. 346–352.
  4. Белоусов Л.В., Миттенталь Дж. Гипервосстановление механических напряжений как возможный движущий механизм морфогенеза // Журн. Общ. Биол. 1992. Т. 53. № 6. С. 797–807.
  5. Alonso J., Goldmann W. Cellular mechanotransduction // AIMS Biophysics. 2016. V. 3. № 1. P. 50–62.
  6. Aragona M., Panciera T., Manfrin A. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors // Cell. 2013. V. 154. № 5. P. 1047–1059.
  7. Belintsev B.N., Belousov L.V., Zaraisky A.G. Model of epithelial morphogenesis based on elastic forces and cell contact polarization // Ontogenez. 1985. V. 16. № 1. P. 5–14.
  8. Belintsev B.N., Beloussov L.V., Zaraisky A.G. Model of pattern formation in epithelial morphogenesis // J Theor Biol. 1987. V 129. № 4. P. 369–394.
  9. Belousov L.V. Formation and cellular structure of the lines of tension in the axial rudimenta of amphibian embryos // Ontogenez. 1978. V. 9. № 2. P. 124–130.
  10. Beloussov L.V. Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields // Int. J. Dev. Biol. 1997. V. 41. № 6. P. 771–779.
  11. Beloussov L.V. Mechanically based generative laws of morphogenesis // Phys. Biol. 2008. V. 5. № 1:015009.
  12. Beloussov L.V. Self-Organization, Symmetry and Morphomechanics in Development of Organisms, pp 189–210 // in L. A.V. Pereira (ed.), Embryology – Updates and Highlights on Classic Topics. London: IntechOpen. 2012. 224 p.
  13. Beloussov L.V. Morphogenetic fields: history and relations to other concepts. pp. 271–282 // In: Fels, D., Cifra, M., Scholkmann, F. (Eds.), Fields of the Cell. Kerala, India: Research Signpost. 2015. 321 p.
  14. Belousov L.V., Dorfman I.G., Cherdantzev V.G. Mechanical stresses and morphological patterns in amphibian embryos // J. Embryol. and Exper. Morphology. 1975. V. 34. № 34. P 559–574.
  15. Belousov L.V., Dorfman I.G., Cherdantsev V.G. Patterns of mechanical stress at the successive stages of early development of frog // Ontogenez. 1976. V. 7. № 2. P. 115–122.
  16. Belousov L.V., Chernavskii D.S. Instability and stability in biological morphogenesis// Ontogenez. 1977. V. 8. № 2. P. 99–114.
  17. Beloussov L.V., Grabovsky V.I. Morphomechanics: goals, basic experiments and models // Int. J. Dev. Biol. 2006. V. 50. № 2–3. P. 81–92.
  18. Belousov L.V., Ermakov A.S. Artificially applied tensions normalize development of relaxed Xenopus Laevis embryos // Ontogenez. 2001. V. 32. № 4. P. 288–94.
  19. Beloussov L.V., Lakirev A.V., Naumidi I.I. et al. Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos // Int. J. Dev Biol. 1990. V. 34. № 4. P. 409–419.
  20. Belousov L.V., Luchinskaia N.N. Intercellular relay interactions in explants of amphibian embryonic tissues. I. Intercellular relay interactions in normal explant morphogenesis // Tsitologiia. 1983. V. 25. № 8. P. 939–44.
  21. Beloussov L.V., Luchinskaia N.N. Biomechanical feedback in morphogenesis, as exemplified by stretch responses of amphibian embryonic tissues // Biochem Cell Biol. 1995. V. 73. № 7–8. P. 555–6.3
  22. Beloussov L.V., Luchinskaya N.N., Ermakov A.S. et al. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events // Int. J. Dev. Biol. 2006. V. 50. № 2–3. P. 113–122.
  23. Blechschmidt E., Gasser R. F. Biokinetics and biodynamics of human differentiation. Springfield Illinois: Ch. C. Thomas Publ. 1978. North Atlantic Books; Reprint edition. 2012. 312 p.
  24. Buxboim A., Discher D.E. Stem cells feel the difference // Nat Method. 2010. V. 7. P. 695–697.
  25. Brun-Usan M., Salazar-Ciudad I. The Evolution of Cleavage in Metazoans. P 529-544 // In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer Cham. 2021. 1257 p.
  26. Burke A.C. Shifting the Black Box: Approaches to the Development and Evolution of the Vertebrate Mesoderm P. 833–848. // In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer. Cham. 2021. 1257 p.
  27. Cherdantsev V.G. Spatial deployments of morphogenetic movements as elements of the oral field in anuran amphibians. I. Structurally stable morphogenetic movements// Ontogenez. 1977. V. 8. № 4. P. 335–347.
  28. Cherdantsev V.G., Korvin-Pavlovskaya E.G. Fluid model of epithelial morphogenesis: Oscillations and structuring. Biosystems. 2018. № 173. P. 83–99.
  29. Davidson L., von Dassow M., Zhou J. Multi-scale mechanics from molecules to morphogenesis // Int. J. Biochem. Cell Biol. V. 41. № 11. P. 2147–2162.
  30. Desprat N., Supatto W., Pouille P.A. et al. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos // Dev. Cell. 2008. V. 15. № 3. P. 470–477.
  31. Donnaloja F., Jacchetti E., Soncini M. et al. Mechanosensing at the Nuclear Envelope by Nuclear Pore Complex Stretch Activation and Its Effect in Physiology and Pathology // Front. in Physiol. V. 12. № 10:896.
  32. Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification // Cell. 2006. V. 126. P. 677–689.
  33. Ermakov A.S. The Theory of Tensegrity and Spatial Organization of Living Matter // Russ. J. Dev. Biol. 2018a. № 49. P. 87–100.
  34. Ermakov A.S. Professor Lev Beloussov and the birth of morphomechanics // Biosystems. 2018b. № 173. P. 26–35.
  35. Ermakov A.S., Belousov L.V. Morphogenetic and differentiation sequelae to relaxation of mechanical tensions in Xenopus laevis blastula // Ontogenez 1998. V. 29. № 6. P. 450–458.
  36. Eroshkin F.M., Zaraisky A.G. Mechano-sensitive regulation of gene expression during the embryonic development. Genesis // Genesis. 2017. № 55:e23026.
  37. Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium // Curr Biol. 2003. V. 13. № 16. P. 1365–77.
  38. Gerhart J., Vincent J.-P., Scharf S. et al. Cortical-subcortical rotation in the amphibian egg. P. 245–250 // In: Satir P., Lazarides E., Condeelis J.S. (eds) Signal Transduction in Cytoplasmic Organisation and Cell Motility. N.Y.: Alan R. Liss Inc., 1988. 386 p.
  39. Gilbert S.F., Barresi M.F. Developmental Biology. 11th Edition. Oxford University Press. 2016. 500 p.
  40. Gordon R. Mechanics in embryogenesis and embryonics: prime mover or epiphenomenon // Int. J. Dev. Biol. 2006. V. 50. № 2–3. P. 245–253.
  41. Gurwitsch A.G. Die Vererbung als Verwircklichungsvorgang // Biol. Zbl. 1912. № 22. P. 458–486.
  42. Harris A.K. Behavior of cultured cells on substrata of variable adhesiveness // Exp. Cell Res. 1973. V. 77. № 1. P. 285–297.
  43. Harris A.K., Wild P., Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 1980. V. 208. № 4440. P. 177–179.
  44. Harris A.K., Stopak D., Wild D.P. Fibroblast traction as a mechanism for collagen morphogenesis // Nature. 1981. V. 290. № 5803. P. 249–251.
  45. Harris A.K., Stopak D., Warner P. Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model // J. Embryol. Exp. Morphol. 1984. № 80. P. 1–20.
  46. Igamberdiev A.U. Hyper-restorative non-equilibrium state as a driving force of biological morphogenesis // Biosystems. 2018. № 173. P. 104–113.
  47. Igamberdiev A., Beloussov L.V., Gordon R. (eds). Biological Morphogenesis: Theory and Computation. Biosystems. 2012. V. 109. № 3. P. 241–506.
  48. Igamberdiev A., Gordon R., Cherdantsev V. et al. (eds). Computational, Theoretical, and Experimental Approaches to Morphogenesis. Biosystems. 2018. V. 173. P. 1–334
  49. Ingber D.E. Tensegrity, I. Cell structure and hierarchical systems biology // J. Cell Sci. 2003a. V. 116. Pt 7. P. 1157–1173.
  50. Ingber D.E. Tensegrity, I.I., How structural networks influence cellular information processing networks // J. Cell Sci. 2003b. V. 116. Pt 8. P. 1397–1408.
  51. Ingber D.E. Mechanobiology and diseases of mechanotransduction // Ann Med. 2003c. V. 35. № 8. P. 564–77.
  52. Ingber D.E., Di Carlo D. Interdisciplinarity and mechanobiology // iScience. 2022. V. 25. № 5. P. 104187.
  53. Keller R.E. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis // J. Exp. Zool. 1981. V. 216. № 1. P. 81–101.
  54. Keller R.E. The cellular basis of gastrulation in Xenopus laevis: active, postinvolution convergence and extension by mediolateral interdigitation // Amer. Zool. 1984. V. 24. № 3. P. 589–603.
  55. Keller R., Davidson L.A., Shook D.R. How we are shaped: The biomechanics of gastrulation. Differentiation. 2003. V. 71. № 3. P. 171–205.
  56. Kirby T.J., Lammerding J. Emerging views of the nucleus as a cellular mechanosensor // Nat Cell Biol. 2018. V. 20. № 4. P. 373–381.
  57. Lakirev A.V., Belousov L.V., Naumidi I.I. Effect of external tensions on tissue differentiation in embryos of the clawed toad in vitro // Ontogenez. 1988. V. 19. № 6. P. 591–600.
  58. Lin S.L., Yang J.C., Ho K.N. et al. Effects of compressive residual stress on the morphologic changes of fibroblasts // Med. Biol. Eng Comput. 2009. V. 47. № 12. P. 1273–1279.
  59. Luchinskaia N.N., Belousov L.V. Electron microscopic study of rapid morphogenetic processes in embryonic tissue explants of amphibia // Ontogenez. 1977. V. 8. № 3. P. 263–268.
  60. Luchinskaia N.N., Cherdantsev V.G., Ermakov A.S. et al. Morphomechanical reactions and mechanically stressed structures in amphibian embryos, as related to gastrulation and axial organs formation // Biosystems. 2018. V. 173. № 18–25.
  61. Mammoto T., Mammoto A., Ingber D.E. Mechanobiology and developmental control// Annu Rev. Cell Dev. Biol. 2013. V. 29. P. 27–61.
  62. Martino F., Perestrelo A.R., Vinarský V. et al. Cellular Mechanotransduction: From Tension to Function // Front Physiol. 2018. V. 5. № 9. P. 824.
  63. Meshcheryakov V.N., Beloussov L.V. Asymmetrical rotations of blastomeres in early cleavage of gastropoda // Roux Arch Dev. Biol. 1975. V. 177. P. 193–203
  64. Naumidi I.I., Belousov L.V. Sokratimost’ i épitelizatsiia v osevoĭ mezoderme kurinogo zarodysha [Contractility and epithelization in the chick embryo axial mesoderm] // Ontogenez. 1977. V. 8. № 5. P. 517–520.
  65. Nuño de la Rosa L., Müller G.B. Evolutionary Developmental Biology. Springer Cham. 2021. 1257 p.
  66. Piccolo S., Dupontm S., Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 2014. V. 94. № 4. P. 1287–1312.
  67. Petridou N.I., Spiró Z., Heisenberg C.P. Multiscale force sensing in development // Nat. Cell Biol. 2017. V. 19. № 6. P. 581–588.
  68. Rehfeldt F., Engler A.J., Eckhardt A. et al. Cell responses to the mechanochemical microenvironment–implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 2007. V. 59. № 13. P. 1329–1339.
  69. Shook D.R., Kasprowicz E.M., Davidson L.A. et al. Large, long range tensile forces drive convergence duringb Xenopus blastopore closure and body axis elongation // Elife. 2018. № 7:e26944.
  70. Shook D.R., Wen J.W.H., Rolo A. et al. Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians // Elife. 2022. № 11:e57642.
  71. Stein A.A., Logvenkov S.A., Volodyaev I.V. Continuum modeling of mechano-dependent reactions in tissues composed of mechanically active cells // Biosystems. 2018. № 173. P. 225–234.
  72. Uhler C., Shivashankar G.V. Regulation of genome organization and gene expression by nuclear mechanotransduction // Nat. Rev. Mol. Cell Biol. V. 18. № 12. P. 717–727.
  73. Wang J.H., Thampatty B.P. An introductory review of cell mechanobiology // Biomech. Model. Mechanobiol. 2006. V. 5. № 1. P. 1–16.
  74. Wang N., Tytell J.D., Ingber D.E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus // Nat. Rev. Mol. Cell Biol. 2009. V. 10. № 1. P. 75–82.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (333KB)
3.

Скачать (143KB)
4.

Скачать (496KB)

© А.С. Ермаков, 2023