Heat Shock Proteins in Сancer Diagnostics
- Autores: Guliy O.I.1, Staroverov S.A.1,2, Dykman L.A.1
- 
							Afiliações: 
							- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences
- Saratov State Vavilov Agrarian University
 
- Edição: Volume 59, Nº 4 (2023)
- Páginas: 323-336
- Seção: Articles
- URL: https://kld-journal.fedlab.ru/0555-1099/article/view/674606
- DOI: https://doi.org/10.31857/S0555109923040062
- EDN: https://elibrary.ru/QZBTFA
- ID: 674606
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
With the growing number of cancers, new assistive tools are required to obtain extensive molecular profiles of patients to help identify the disease. Early diagnosis of cancer is based on the analysis of relevant biomarkers, which can be used to monitor the population in order to identify the disease until it can be determined using standard methods and is not clinically manifest. One of the potential markers of cancer is heat shock proteins that act as molecular chaperones. Changes in heat shock proteins expression can serve as an important diagnostic marker of the cell’s response to damage. The paper presents a brief overview of the prevalence of oncological diseases in the world, the need of early oncological diagnostics development, as well as the prospects for the use of heat shock proteins in making an oncological diagnosis.
Palavras-chave
Sobre autores
O. Guliy
Institute of Biochemistry and Physiology of Plants and Microorganisms,Saratov Scientific Centre of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: guliy_olga@mail.ru
				                					                																			                												                								Russia, 410049, Saratov						
S. Staroverov
Institute of Biochemistry and Physiology of Plants and Microorganisms,Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State Vavilov Agrarian University
														Email: guliy_olga@mail.ru
				                					                																			                												                								Russia, 410049, Saratov; Russia, 410012, Saratov						
L. Dykman
Institute of Biochemistry and Physiology of Plants and Microorganisms,Saratov Scientific Centre of the Russian Academy of Sciences
														Email: guliy_olga@mail.ru
				                					                																			                												                								Russia, 410049, Saratov						
Bibliografia
- Thenrajan T., Wilson J. // Biosens. Bioelectron: X. 2022. V. 12. 100232. https://doi.org/10.1016/j.biosx.2022.100232
- Шевцов М.А., Хачатрян В.А., Маргулис Б.А. // Современная онкология. 2012. Т. 14. № 1. С. 63–68.
- Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. // Int. J Cancer. 2019. V. 144. № 8. P. 1941–1953.
- Cui F., Zhou Z., Zhou H.S. // J. Electrochem. Soc. 2020. V. 167. № 3. 037525. doi.org/.https://doi.org/10.1149/2.0252003JES
- Crosby D., Bhatia S., Brindle K.M., Coussens L.M., Dive C., Emberton M. et al. // Science. 2022. V. 375. eaay9040. https://doi.org/10.1126/science.aay9040
- Malecka K., Mikuła E., Ferapontova E.E. // Sensors. 2021. V. 21. № 3. P. 736. https://doi.org/10.3390/s21030736
- Anzar N., Hasan M.R., Akram M., Yadav N., Narang J. // Process Biochem. 2020. V. 94. P. 126–135.
- Kuswandi B., Hidayat M.A., Noviana E. // Biosens. Bioelectron. X. 2022. V. 12. 100246. https://doi.org/10.1016/j.biosx.2022.100246
- Hawkes N. // BMJ. 2019. V. 364. l408. https://doi.org/10.1136/bmj.l408
- Brenner H., Schrotz-King P., Holleczek B., Katalinic A., Hoffmeister M. // Dtsch. Arztebl. Int. 2016. V. 113. № 7. P. 101–116. https://doi.org/10.3238/arztebl.2016.0101
- Kraywinkel K., Buttmann-Schweiger N., Benjamin B. // Gesundheitswesen. 2017. V. 79. № 8–9. P. 184.
- Goyal L., Hingmire S., Parikh P.M. // Med. J. Armed Forces India. 2006. V. 62. № 2. P. 162–168.
- Pulumati A., Pulumati A., Dwarakanath B.S., Verma A., Papineni R.V.L. // Cancer Rep. 2023. V. 6. e1764. https://doi.org/10.1002/cnr2.1764
- Franier B., Thompson M. // Biosens. Bioelectron. 2019. V. 135. P. 71–81.
- Первый В.С., Сухой В.Ф. Онкомаркеры. Клинико-диагностический справочник. Ростов-на-Дону: Феникс, 2012. 128 с.
- Абелев Г.И. // Иммунология. 1994. № 3. С. 4–9.
- Predictive Biomarkers in Oncology. / Eds. S. Badve, G.L. Kumar. Cham: Springer Nature, 2019. 642 p.
- Cao D.-L., Yao X.-D. // Chin. J. Cancer. 2010. V. 29. № 2. P. 229–233.
- Dykman L.A., Staroverov S.A., Fomin A.S., Panfilova E.V., Shirokov A.A., Bucharskaya A.B., Maslyakova G.N., Khlebtsov N.G. // Gold Bull. 2016. V. 49. № 3–4. P. 87–94.
- Madu C.O., Lu Y. // J. Cancer. 2010. V. 1. P. 150–177.
- Kimm M.A., Shevtsov M., Werner C., Sievert W., Zhiyuan W., Schoppe O. et al. // Cancers. 2020. V. 12. P. 1331. https://doi.org/10.3390/cancers12051331
- Werner C., Stangl S., Salvermoser L., Schwab M., Shevtsov M., Xanthopoulos A. et al. // Cancers. 2021. V. 13. 3706. https://doi.org/10.3390/cancers13153706
- Cavallaro S., Horak J., Hååg P., Gupta D., Stiller C., Sahu S.S. et al. // ACS Sens. 2019. V. 4. № 5. P. 1399–1408.
- Baghbaderani S.S., Mokarian P., Moazzam P. // Curr. Anal. Chem. 2022. V. 1. P. 63–78.
- Mahato K., Prasad A., Maurya P.K., Chandra P. // J. Anal. Bioanal. Tech. 2016. V. 7. № 2. e125. https://doi.org/10.4172/2155-9872.1000e125
- Mahato K., Maurya P.K., Chandra P. // 3 Biotech. 2018. V. 8. P. 149. https://doi.org/10.1007/s13205-018-1148-8
- Nanobiosensors for Personalized and Onsite Biomedical Diagnosis. / Ed. P. Chandra. Stevenage: IET, 2016. 640 p.
- Purohit B., Vernekar P.R., Shetti N.P., Chandra P. // Sens. Int. 2020. V. 1. 100040. https://doi.org/10.1016/j.sintl.2020.100040
- Kaczor-Urbanowicz K.E., Martín Carreras-Presas C., Kaczor T., Tu M., Wei F., Garcia-Godoy F., Wong D.T. // J. Cell Mol. Med. 2017. V. 21. № 4. P. 640‒647.
- Nagler R., Bahar G., Shpitzer T., Feinmesser R. // Clin. Cancer Res. 2006. V. 12. № 13. P. 3979–3984.
- Lindquist S., Craig E.A. // Annu. Rev. Genet. 1988. V. 22. P. 631–677.
- Richter K., Haslbeck M., Buchner J. // Mol. Cell. 2010. V. 40. № 2. P. 253–266.
- Guisbert E., Herman C., Lu C.Z., Gross C.A. // Genes Dev. 2004. V. 18. № 22. P. 2812–2821.
- Herman C., Gross C.A. In: Encyclopedia of Microbiology. / Ed. J. Lederberg. N.Y.: Acad. Press, 2000. P. 598–606.
- Morimoto R.I., Tissieres A., Georgopoulous C. In: The Biology of Heat Shock Proteins and Molecular Chaperones. / Eds. R.I. Morimoto, A. Tissieres, C. Georgopoulous. Cold Spring Harbor: Laboratory Press, 1994. P. 1–30.
- Whitley D., Goldberg S.P., Jordan W.D. // J. Vasc. Surg. 1999. V. 29. № 4. P. 748–751.
- Ellis J. // Nature. 1987. V. 328. № 6129. P. 378–379.
- Shemesh N., Jubran J., Dror S., Simonovsky E., Basha O., Argov C. et al. // Nat. Commun. 2021. V. 12. 2180. https://doi.org/10.1038/s41467-021-22369-9
- Craig E., Yan W., James P. In: Molecular Chaperones and Folding. Catalysts, Ed. B. Bukau. Amsterdam: Harwood Academic Publishers, 1999. P. 139–162.
- Bascos N.A.D., Landry S.J. // Int. J. Mol. Sci. 2019. V. 20. 6195. https://doi.org/10.3390/ijms20246195
- Lindner R.A., Treweek T.M., Carver J.A. // Biochem. J. 2001. V. 354. P. 79–87.
- Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford Elspeth A. et al. // Cell Stress Chaperones. 2009. V. 14. № 1. P. 105–111.
- Максимович Н.Е., Бонь Е.И. // Биомедицина. 2020. Т. 16. № 2. С. 60–67.
- Rani S., Srivastava A., Kumar M., Goel M. // FEMS Microbiol. Lett. 2016. V. 363. № 6. fnw030. https://doi.org/10.1093/femsle/fnw030
- Azad A.A., Zoubeidi A., Gleave M.E., Chi K.N. // Nat. Rev. Urol. 2015. V. 12. № 1. P. 26–36.
- Akerfelt M., Morimoto R.I., Sistonen L. // Nat. Rev. Mol. Cell Biol. 2010. V. 11. P.545–555.
- Schlesinger M.J. // J. Biol. Chem. 1990. V. 265. № 21. P. 12111–12224.
- Haslbeck M., Franzmann T., Weinfurtner D., Buchner J. // Nat. Struct. Mol. Biol. 2005. V. 12. № 10. P. 842–846.
- Hristozova N., Tompa P., Kovacs D. // PLoS One. 2016. V. 11. № 8. e0161970. https://doi.org/10.1371/journal.pone.0161970
- Muchowski P.J. // Neuron. 2002. V. 35. № 1. P. 9–12.
- Barral J.M., Broadley S.A., Schaffar G., Hartl F.U. // Semin. Cell Dev. Biol. 2004. V. 15. № 1. P. 17–29.
- Liu Z., Xi D., Kang M., Guo X., Xu B. // Cell Stress Chaperones. 2012. V. 17. P. 539–551.
- Tkáčová J., Angelovičová M. // J. Anim. Sci. Biotechnol. 2012. V. 45. P. 349–353.
- Mathew A., Morimoto R.I. // Ann. N. Y. Acad. Scie. 1998. V. 851. P. 99–111.
- Rappa F., Farina F., Zummo G., David S., Campanella C., Carini F. et al. // Anticancer Res. 2012. V. 32. P. 5139–5150.
- Rizzo M., Cappello F., Marfil R., Nibali L., Marino Gammazza A., Rappa F. et al. // Cell Stress Chaperones. 2012. V. 17. P. 399–407.
- Liyanagamage D.S.N.K., Martinus R.D. // Mediators Inflamm. 2020. V. 2020. 8073516. https://doi.org/10.1155/2020/8073516
- Gunther S., Ostheimer C., Stang S., Specht H.M., Mozes P., Jesinghaus M. et al. // Front. Immunol. 2015. V. 6. P. 556. https://doi.org/10.3389/fimmu.2015.00556
- Breuninger S., Erl J., Knape C., Gunther S., Regel I., Rödel F. et al. // J. Clin. Cell Immunol. 2014. V. 5. № 5. P. 264. https://doi.org/10.4172/2155-9899.1000264
- Bayer C., Liebhardt M.E., Schmid T.E., Trajkovic-Arsic M., Hube K., Specht H.M., Schilling D. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2014. V. 88. № 3. P. 694–700.
- Hurwitz M.D., Kaur P., Nagaraja G.M., Bausero M.A., Manola J., Asea A. // Radiother. Oncol. 2010. V. 95. № 3. P. 350–358.
- Abe M., Manola J.B., Oh W.K., Parslow D.L., George D.J., Austin C.L., Kantoff P.W. // Clin. Prostate Cancer. 2004. V. 3. № 1. P. 49–53.
- Takashima M., Kuramitsu Y., Yokoyama Y., Iizuka N., Toda T., Sakaida I. et al. // Proteomics. 2003. V. 3. № 12. P. 2487–2493.
- Feng J.T., Liu Y.K., Song H.Y., Dai Z., Qin L.X., Almofti M.R. et al. // Proteomics. 2005. V. 5. № 17. P. 4581–4588.
- Fujita Y., Nakanishi T., Miyamoto Y., Hiramatsu M., Mabuchi H., Miyamoto A. et al. // Cancer Lett. 2008. V. 263. № 2. P. 280–290.
- Syrigos K.N., Harrington K.J., Karayiannakis A.J., Sekara E., Chatziyianni E., Syrigou E.I., Waxman J. // Urology. 2003. V. 61. № 3. P. 677–680.
- Pick E., Kluger Y., Giltnane J.M., Moeder C., Camp R.L., Rimm D.L., Kluger H.M. // Cancer Res. 2007. V. 67. № 7. P. 2932–2937.
- Santiago-O’Farrill J.M., Kleinerman E.S., Hollomon M.G., Livingston A., Wang W.L., Tsai J.W., Gordon N.B. // Oncotarget. 2017. V. 9. № 2. P. 1602–1616.
- Zhu Y., Tian Q., Qiao N., Cheng Y., Li H. // Eur. J. Gynaecol. Oncol. 2014. V. 36. № 4. P. 394–396.
- Ge H., Yan Y., Guo L., Tian F., Wu D. // Onco Targets Ther. 2018. V. 11. P. 351–359.
- Rappa F., Pitruzzella A., Marino Gammazza A., Barone R., Mocciaro E., Tomasello G. et al. // Cell Stress Chaperones. 2016. V. 21. № 5. P. 927–933.
- Jolly C., Morimoto R.I. // J. Natl. Cancer Inst. 2000. V. 92. № 19. P. 1564–1572.
- Hoang A.T., Huang J., Rudra-Ganguly N., Zheng J., Powell W.C., Rabindran S.K. et al. // Am. J. Pathol. 2000. V. 156. № 3. P. 857–864.
- Cornford P.A., Dodson A.R., Parsons K.F., Desmond A.D., Woolfenden A., Fordham M. et al. // Cancer Res. 2000. V. 60. № 24. P. 7099–7105.
- van’t Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A., Mao M. et al. // Nature. 2002. V. 415. № 6871. P. 530–536.
- Ciocca D.R., Calderwood S.K. // Cell Stress Chaperones. 2005. V. 10. P. 86–103.
- Shi L., Chevolot Y., Souteyrand E., Laurenceau E. // Cancer Biomark. 2017. V. 18. № 2. P. 105–116.
- Zaher E.R., Hemida M.A., El-Hashash M.M., El-Sheridy H.G. // J. Cancer Res. Treat. 2018. V. 6. № 2. P. 47–53.
- Yang S., Xiao H., Cao L. // Biomed. Pharmacother. 2021. V. 142. 112074. https://doi.org/10.1016/j.biopha.2021.112074
- Qokoyi N.K., Masamba P., Munsamy G., Kappo A.P. // Lett. Drug Des. Discov. 2021. V. 18. P. 650–665.
- Ischia J., So A.I. // Nat. Rev. Urol. 2013. V. 10. P. 386–395.
- Di Tommaso L., Franchi G., Park Y.N., Fiamengo B., Destro A., Morenghi E. et al. // Hepatology. 2007. V. 45. P. 725–734.
- Witkin S.S. // Eur. J. Gynaecol. Oncol. 2001. V. 22. P. 249–256.
- Albakova Z., Norinho D.D., Mangasarova Y., Sapozhnikov A. // Front. Med. 2021. V. 88. 743476. https://doi.org/10.3389/fmed.2021.743476
- Chen R., Chen S., Liao J., Chen X., Xu X. // Am. J. Transl. Res. 2016. V. 8. P. 1763–1768.
- Arrigo A.P., Paul C., Ducasse C., Manero F., Kretz-Remy C., Virot S. et al. // Prog. Mol. Subcel. Biol. 2002. V. 28. P. 185–204.
- Ciocca D.R., Rozados V.R., Cuello-Carrio F.D., Gervasoni, S.I., Matar, P., Scharovsky O.G. // Cell Stress Chaperones. 2003. V. 8. № 1. P. 26–36.
- Shevtsov M., Multhoff G. // Front. Immunol. 2016. V. 7. 171. https://doi.org/10.3389/fimmu.2016.00171
- Murshid A., Gong J., Stevenson M.A., Calderwood S.K. // Expert Rev Vaccines. 2011. V. 10. № 11. P. 1553–1568.
- Троицкая О.С., Новак Д.Д., Рихтер В.А., Коваль О.А. // Acta Naturae. 2022. Т. 14. № 1. С. 40–53.
- Multhoff G., Pfister K., Gehrmann M., Hantschel M., Gross C., Hafner M., Hiddemann W. // Cell Stress Chaperones. 2001. V. 6. P. 337–344.
- Basu S., Srivastava P.K. // Cell Stress Chaperones. 2000. V. 5. P. 443–451.
- Tsan M.F., Gao B. // Am. J. Physiol. Cell Physiol. 2004. V. 286. P. C739–C744.
- Mazzaferro V., Coppa J., Carrabba M.G., Rivoltini L., Schiavo M., Regalia E. et al. // Clin. Cancer Res. 2003. V. 9. P. 3235–3245.
- Pilla L., Patuzzo R., Rivoltini L., Maio M., Pennacchioli E., Lamaj E. et al. // Cancer Immunol. Immunother. 2006. V. 55. P. 958–968.
- Maki R.G., Livingston P.O., Lewis J.J., Janetzki S., Klimstra D., Desantis D., Srivastava P.K., Brennan M.F. // Dig. Dis. Sci. 2007. V. 52. P. 1964–1972.
- Bolhassani A., Rafati S. // Expert Rev. Vaccines. 2008. V. 7. № 8. P. 1185–1199.
- Shevtsov M.A., Nikolaev B.P., Yakovleva L.Y., Parr M.A., Marchenko Y.Y., Eliseev I. et al. // J. Control. Release. 2016. V. 220. P. 329–340.
- Testori A., Richards J., Whitman E., Mann G.B., Lutzky J., Camacho L. et al. // J. Clin. Oncol. 2008. V. 26. P. 955–962.
- Ampie L., Choy W., Lamano J.B., Fakurnejad S., Bloch O., Parsa A.T. // J. Neurooncol. 2015. V. 123. P. 441–448.
- Dykman L.A., Staroverov S.A., Kozlov S.V., Fomin A.S., Chumakov D.S., Gabalov K.P. et al. // Int. J. Mol. Sci. 2022. V. 23. № 22. 14313. https://doi.org/10.3390/ijms232214313
- Das J.K., Xiong X., Ren X., Yang J.-M., Song J. // J. Oncol. 2019. V. 2019. 3267207. https://doi.org/10.1155/2019/3267207
- Hu C., Yang J., Qi Z., Wu H., Wang B., Zou F., Mei H., Liu J., Wang W., Liu Q. // MedComm. 2022. V. 3. № 3. e161. https://doi.org/10.1002/mco2.161
- Деев С.М., Лебеденко Е.Н. // Биоорганическая химия. 2015. Т. 41. № 5. С. 539–552.
- Dykman L.A., Khlebtsov N.G. // Biomaterials. 2016. V. 108. P. 13–34.
- Odion R.A., Liu Y., Vo-Dinh T. // Cancers. 2022. V. 14. 5737. https://doi.org/10.3390/cancers14235737
- Albakova Z., Siam M.K.S., Sacitharan P.K., Ziganshin R.H., Ryazantsev D.Y., Sapozhnikov A.M. // Transl. Oncol. 2021. V. 14. 100995. https://doi.org/10.1016/j.tranon.2020.100995
- Regimbeau M., Abrey J., Vautrot V., Causse S., Gobbo J., Garrido C. // Semin. Cancer Biol. 2022. V. 86. P. 46–57.
- Wang L., Xu W., Wang B., Si X., Li S. // Processes. 2023. V. 11. 403. https://doi.org/10.3390/pr11020403
- Khalil A.A., Kabapy N.F., Deraz S.F., Smith C. // Biochim. Biophys. Acta – Rev. Cancer. 2011. V. 1816. P. 89–104.
- Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens Bioelectron: X. 2022. V. 11. 100211. .https://doi.org/10.1016/j.biosx.2022.100211
- Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens Bioelectron. 2023. V. 222. 114909. https://doi.org/10.1016/j.bios.2022.114909
- Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. // Клиническая лабораторная диагностика. 2017. Т. 62. С. 52–59.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





