Antimicrobial activity of silver proteinate and its changes during storage
- Авторлар: Kotelevets E.P.1, Vorobyova I.V.1, Kiryushin V.A.1
-
Мекемелер:
- Ryazan State Medical University
- Шығарылым: Том 69, № 11 (2024)
- Беттер: 336-342
- Бөлім: Original Study Articles
- ##submission.datePublished##: 12.11.2024
- URL: https://kld-journal.fedlab.ru/0869-2084/article/view/643406
- DOI: https://doi.org/10.17816/cld643406
- EDN: https://elibrary.ru/PICRLH
- ID: 643406
Дәйексөз келтіру
Аннотация
Background: In the context of the growing problem of antibiotic resistance, the selection of drugs with non-specific antimicrobial action is a relevant approach for treating upper respiratory tract infections. Silver protein, known for its antimicrobial properties, is used as an active ingredient in several medical formulations.
Aim: The work aimed to assess the effect of storage duration and temperature on the antimicrobial activity of the pharmaceutical preparation with the International Nonproprietary Name silver protein.
Methods: To conduct the experimental study, reference strains of Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 9027), Bacillus cereus (ATCC 14579), and Candida albicans (ATCC 10231) were used as test cultures, along with silver protein solutions stored at 22 °C and 7 °C. Inoculations were performed from day 0 to day 75 at 7-day intervals. Antimicrobial efficacy was assessed by comparing the diameters (mm) of microbial growth inhibition zones throughout the experiment.
Results: On day 30, the diameters of the inhibition zones were larger in the 7 °C group: S. aureus by 25.0% (p = 0.033), E. coli by 12.2% (p = 0.041), P. aeruginosa by 18.3% (p = 0.042), B. cereus by 10.0% (p = 0.005), and C. albicans by 42.7% (p = 0.016). On days 37, 45, 53, 60, 68, and 75 of the study, the diameters of the inhibition zones for S. aureus, P. aeruginosa, B. cereus, and C. albicans remained unchanged (9, 8, 7, and 7 mm, respectively); for E. coli, on days 37, 45, 53, and 60, the diameters remained the same as on day 30 (8 mm), whereas on days 68 and 75 a decrease to 7 mm was observed (12.5%, p = 0.005).
Conclusion: Keeping the solution at 7 °C for 30 days does not reduce its antimicrobial activity, making it possible to choose a convenient storage option for the working solution. Given the preservation of antimicrobial activity through day 75, silver protein can be recommended for treating superinfections and chronic forms of rhinosinusitis.
Негізгі сөздер
Толық мәтін

Авторлар туралы
Elena Kotelevets
Ryazan State Medical University
Хат алмасуға жауапты Автор.
Email: kotelevetse@mail.ru
ORCID iD: 0000-0001-7972-5861
SPIN-код: 1609-1183
MD, Cand. Sci. (Medicine)
Ресей, RyazanIrina Vorobyova
Ryazan State Medical University
Email: francais64@mail.ru
ORCID iD: 0000-0002-9113-9184
SPIN-код: 9216-5887
Cand. Sci. (Biology), Assistant Professor
Ресей, RyazanValery Kiryushin
Ryazan State Medical University
Email: v.kirushin@rzgmu.ru
ORCID iD: 0000-0002-1258-9807
SPIN-код: 2895-7565
MD, Dr. Sci. (Medicine), Professor
Ресей, RyazanӘдебиет тізімі
- Burmistrov VA, Zaikovsky VI, Burmistrov AV, et al. Comparative electron microscopic and microbiological examination of silver proteinate preparations. Siberian Scientific Medical Journal. 2018;38(4):30–36. (In Russ.) doi: 10.15372/SSMJ20180404
- Kiselyov B, Abdulkerimov HT, Terskova NE, Chaukina VA. Clinical efficacy of the drug 200 mg silver proteinate in the complex therapy of acute infectious rhinitis in children, which occurred as part of an acute respiratory infection. Russian Otorhinolaryngology. 2021;20(4):88–95. doi: 10.18692/1810-4800-2021-4-88-95
- Karpishchenko SA, Rodneva YuA, Ekushov KA. Improving the clinical effectiveness of the treatment of acute inflammatory diseases of the upper respiratory tract in children with the use of silver-based medicines. Medical Council. 2022;(19):42–52. doi: 10.21518/2079-701X-2022-16-19-42-52
- Gurov AV, Ermolaev AG, Dubovaya TK, et al. Current possibilities of using silver proteinate in the treatment of inflammatory diseases of the nose and paranasal sinuses. Medical Council. 2023;(7):46–51. doi: 10.21518/ms2023-120
- Wise SK, Lin SY, Toskala E. International consensus statement on allergy and rhinology: allergic rhinitis—executive summary. Int Forum Allergy Rhinol. 2018;8(2):85–107. doi: 10.1002/alr.22070
- Wise SK, Damask C, Roland LT, et al. International consensus statement on allergy and rhinology: Allergic rhinitis – 2023. Int Forum Allergy Rhinol. 2023;13(4):293–859. doi: 10.1002/alr.23090
- Khina AG, Krutyakov YuA. Similarities and differences in the mechanism of antibacterial action of silver ions and nanoparticles. Applied Biochemistry and Microbiology. 2021;57(6):523–535. doi: 10.31857/S0555109921060052
- Orlandi RR, Kingdom TT, Smith TL, et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol. 2021;11(3):213–739. doi: 10.1002/alr.22741
- Cheng M, Dai Q, Liu Z, et al. New progress in pediatric allergic rhinitis. Front. Immunol. 2024;15:1452410. doi: 10.3389/fimmu.2024.1452410
- Wang J, Zhang Y, Chen Y, et al. Risk factors investigation for different outcomes between unilateral and bilateral chronic rhinosinusitis with nasal polyps patients. Clin Transl Allergy. 2024;14(9):e12395. doi: 10.1002/clt2.12395
- Zaitoun F, Al Hameli H, Karam M, et al. Management of Allergic Rhinitis in the United Arab Emirates: Expert Consensus Recommendations on Allergen Immunotherapy. Cureus. 2024;16(7):e65260. doi: 10.7759/cureus.65260
- Norman G, Christie J, Liu Z, et al. Antiseptics for burns. Cochrane Database Syst Rev. 2017;7(7):CD011821. doi: 10.1002/14651858.CD011821.pub2
- Fung MC, Bowen DL. Silver products for medical indications: risk-benefit assessment. J Toxicol Clin Toxicol. 1996;34(1):119–26. doi: 10.3109/15563659609020246
- Yan X, He B, Liu L, et al. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics. 2018;10(4):557–564. doi: 10.1039/c7mt00328e
- Slawson RM, Lohmeier-Vogel EM, Lee H, Trevors JT. Silver resistance in Pseudomonas stutzeri. Biometals. 1994;7:30–40. doi: 10.1007/BF00205191
- Liao S, Zhang Y, Pan X, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine. 2019;14:1469–1487. doi: 10.2147/IJN.S191340
- Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–2178. doi: 10.1128/aem.02001-07
- Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-Negative Bacteria. Sci Transl Med. 2013;5(190):190ra81. doi: 10.1126/scitranslmed.3006276
- Rugerio-Vargas C, Hurtado MM. Modification of the Silver Proteinate Impregnation Technique for Protozoa and Cultured Nerve Cells. Biotechnic & Histochemistry. 1991;66(3):131–135. doi: 10.3109/10520299109110566
- Bozhkova SA, Gordina EM, Markov MA, et al. The Effect of Vancomycin and Silver Combination on the Duration of Antibacterial Activity of Bone Cement and Methicillin-Resistant Staphylococcus aureus Biofilm Formation. Traumatology and Orthopedics of Russia. 2021;27(2):54–64. doi: 10.21823/2311-2905-2021-27-2-54-64
- Xu L, Wang YY, Huang J, et al. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. doi: 10.7150/thno.45413
- Abdalla SSI, Katas H, Azmi F, et al. Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr Drug Deliv. 2020;17(2):88–100. doi: 10.2174/1567201817666191227094334
- Hempelmann E, Krafts K. The mechanism of silver staining of proteins separated by SDS polyacrylamide gel electrophoresis. Biotech Histochem. 2017;92(2):79–85. doi: 10.1080/10520295.2016.1265149
- Wong AYH, Xie S, Tang BZ, Chen S. Fluorescent Silver Staining of Proteins in Polyacrylamide Gels. J Vis Exp. 2019;(146). doi: 10.3791/58669-v
Қосымша файлдар
