Vitamin D deficiency leads to deterioration of post-infarction remodeling of the left ventricle in rats

Cover Page

Cite item

Full Text

Abstract

Coronary heart disease (CHD) is a multifactorial pathology, the progression of which is associated with the development of chronic heart failure (CHF) after a myocardial infarction (MI). Recent studies have shown that vitamin D deficiency is an independent risk factor for coronary heart disease and the severity of its course. Due to the lack of a unified understanding of the pathogenetic role of vitamin D deficiency, it is relevant to study the relationship of vitamin D deficiency with myocardial remodeling after myocardial infarction in rats. The purpose of the study. To study echocardiographic and morphological parameters of postinfarction myocardial remodeling in rats with vitamin D deficiency. Vitamin D deficiency was modeled in male Wistar stock rats (n = 41) by feeding them for two months with Delta Feeds with zero vitamin D content, followed by IM modeling. The animals were divided into 3 groups: 1st – the comparison group, 2nd – rats that did not receive cholecalciferol after MI, 3rd – those who received cholecalciferol after MI. Echocardiography was performed on a high-resolution ultrasound machine MyLabTouchSL 3116 on the 30th and 60th days of the experiment after IM modeling. Content 25(ОН)D in blood serum D was determined in 5 individuals from each group by the enzyme immunoassay (ELISA). Histological examination determined the size of the scar and assessed the severity of myocardial remodeling. Level of 25(OH)D in rats from group 3 was higher than in animals from comparison group 1 and group 2 (59.70 (50.50–64.80) nmol/L, 9.00 (8.12–9.54) nmol/l and 8.20 (7.60–8.31) nmol/l, respectively; p = 0.04). Cholecalciferol therapy was accompanied by a decrease in heart rate in group 3 compared with this indicator in group 2 (p = 0.0004) on day 30 after MI. Compared with group 3, animals from group 2 had a higher end diastolic size (EDS) (p = 0.002), end systolic size (ESS) (p = 0.002) and lower left ventricular shortness fraction (SF) (p = 0.002) and ejection fraction (EF) (p = 0.002) on days 30 and 60 after ischemic myocardial injury. The scar area as a percentage of the LV wall area, LV wall thickness in the area of the scar and interventricular septum (IVS), hypertrophy and dilation indices, taking into account the thickness of the LV walls, were higher in group 2 than in group 3 (p < 0.05). In an experimental MI model in rats with vitamin D deficiency, those who did not receive cholecalciferol therapy after MI had a significant development of myocardial hypertrophy, decreased left ventricular function, and a larger postinfarction scar area than those who received cholecalciferol.

About the authors

Z. I. Ionova

Pavlov First Saint Petersburg State Medical University Ministry of Health of the Russian Federation

Email: zhanna@ncmed.me
St. Petersburg, Russia

A. A. Karpov

Almazov National Research Medical Center of the Ministry of Health of the Russian Federation

St. Petersburg, Russia

O. A. Berkovich

Pavlov First Saint Petersburg State Medical University Ministry of Health of the Russian Federation

St. Petersburg, Russia

S. G. Cefu

Pavlov First Saint Petersburg State Medical University Ministry of Health of the Russian Federation

St. Petersburg, Russia

L. A. Shilenko

Almazov National Research Medical Center of the Ministry of Health of the Russian Federation

St. Petersburg, Russia

M. G. Butskikh

St. Petersburg Research Institute of ENT, Ministry of Health of the Russian Federation

St. Petersburg, Russia

A. K. A. Chervaev

Almazov National Research Medical Center of the Ministry of Health of the Russian Federation

St. Petersburg, Russia

D. S. Chepurnaya

Pavlov First Saint Petersburg State Medical University Ministry of Health of the Russian Federation

St. Petersburg, Russia

D. Y. Ivkin

St. Petersburg State University of Chemistry and Pharmacy Ministry of Health of the Russian Federation

St. Petersburg, Russia

T. D. Vlasov

Pavlov First Saint Petersburg State Medical University Ministry of Health of the Russian Federation

St. Petersburg, Russia

References

  1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ (2020) 2019 ESC guidelines on the diagnosis and management of chronic coronary syndromes: the task force for diagnosis and management of chronic coronary syndromes of the European society of cardiology (ESC). Eur Heart J 41(3): 407–477. https://doi.org/10.1093/eurheartj/ehz825
  2. Pencina MJ, Navar AM, Wojdyla D (2019) Quantifying Importance of Major Risk Factors for Coronary Heart Disease. Circulation 139(13): 1603–1611. https://doi.org/10.1161/CIRCULATIONAHA.117.031855
  3. Mokadem ME, Boshra H, Hady YAE, Hameed AS (2021) Relationship of serum vitamin D deficiency with coronary artery disease severity using multislice CT coronary angiography. Clin Investig Arterioscler 33(6): 282–288. https://doi.org/10.1016/j.arteri.2021.02.008
  4. Полуэктова АЮ, Мартынова ЕЮ, Фатхутдинов ИР, Демидова ТЮ, Потешкин ЮЕ (2018) Генетические особенности чувствительности к витамину D и распространенность дефицита витамина D среди пациентов поликлиники. РМЖ Мать и дитя 1: 11–17. [Poluektova AYu, Martynova EYu, Fatkhutdinov IR, Demidova TYu (2018) Genetic features of vitamin D sensitivity and the prevalence of vitamin D deficiency among polyclinic patients. Mother and child 1:11–17. (In Russ.)]. https://doi.org/10.32364/2618-8430-2018-1-1-11-17
  5. Суплотова ЛА, Авдеева ВА, Пигарова ЕА, Рожинская ЛЯ, Трошина ЕА (2021) Дефицит витамина D в России: первые результаты регистрового неинтервенционного исследования частоты дефицита и недостаточности витамина D в различных географических регионах страны. Пробл эндокринол 67(2): 84–92. [Suplotova LA, Avdeeva VA, Pigarova EA, Rozhinskaya LYa, Troshina EA (2021) Vitamin D deficiency in Russia: The first results of a register-based non-interventional study of the frequency of vitamin D deficiency and insufficiency in various geographical regions of the country. Probl Endocrinol 67(2): 84–92. (In Russ.)]. https://doi.org/10.14341/probl12736
  6. De la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H (2021) Vitamin D and cardiovascular health. Clin Nutr 40(5): 2946–2957. https://doi.org/10.1016/j.clnu.2020.12.025
  7. Crea F (2022) The risk of ‘hidden’ sodium and of low vitamin D levels. Eur Heart J 43: 1687–1690. https://doi.org/10.1093/eurheartj/ehac203
  8. Беркович ОА, Ионова ЖИ, Пчелина СН, Ду Ц, Мирошникова ВВ, Боткина АА, Драчева КВ, Беляева ОД (2022) Особенности клинического течения ишемической болезни сердца у больных с различной обеспеченностью витамином D, жителей Санкт-Петербурга: ассоциация с комплексом генотипов рецептора витамина D. Трансляц мед 9(2): 6–14. [Berkovich OA, Ionova ZhI, Pchelina SN, Du Ts, Miroshnikova VV, Botkina AA, Dracheva KV, Belyaeva OD (2022) Features of the clinical course of coronary heart disease in patients with varying vitamin D levels, residents of St. Petersburg: association with a complex of vitamin D receptor genotypes. Translat med 9(2): 6–14. (In Russ.)]. https://doi.org/10.18705/2311-4495-2022-9-2-6-14
  9. Milazzo V, De Metrio M, Cosentino N, Marenzi G, Tremoli E (2017) Vitamin D and AMI. World J Cardiol 9(1): 14–20. https://doi.org/10.4330/wjc.v9.i1.14
  10. Roger VL (2021) Epidemiology of Heart Failure: A Contemporary Perspective. Circ Res 128(10): 1421–1434. https://doi.org/10.1161/CIRCRESAHA.121.318172
  11. Andersson C, Liu С, Cheng S, Wang TJ, Gerszten RE, Larson MG, Vasan RS (2020) Metabolomic signatures of cardiac remodelling and heart failure risk in the community. ESC Heart Failure 7(6): 3707–3715. https://doi.org/10.1002/ehf2.12923
  12. Mancuso P, Rahman A, Hershey SD, Dandu L, Nibbelink KA, Simpson RU (2008) 1,25-Dihydroxyvitamin-D3 Treatment Reduces Cardiac Hypertrophy and Left Ventricular Diameter in Spontaneously Hypertensive Heart Failure–prone (cp/+) Rats Independent of Changes in Serum Leptin. J Cardiovasc Pharmacol 51: 559–564. https://doi.org/10.1097/FJC.0b013e3181761906
  13. Malik A, Brito D, Vaqar S (2022) Congestive Heart Failure. StatPearls Treasure Island (FL): StatPearls Publishing PMID: 28613623
  14. Ali SS (2018) The Effects of Hypervitaminosis D in Rats on Histology and Weights of Some Immune System Organs and Organs Prone to Calcification. Int J Pharmac Phytopharmacol Res 8(6): 59–71. https://doi.org/10.31185/wjps.617
  15. Карпов АА, Ивкин ДЮ, Драчева АВ, Питухина НН, Успенская ЮК, Ваулина ДД, Усков ИС, Эйвазова ШД, Минасян СМ, Власов ТД, Бурякина АВ, Галагудза ММ (2014) Моделирование постинфарктной сердечной недостаточности путем окклюзии левой коронарной артерии у крыс: техника и методы морфофункциональной оценки. Биомедицина 3: 32–48. [Karpov AA, Ivkin DYu, Dracheva AV, Pitukhina NN, Uspenskaya SC, Vaulina DD, Uskov IS, Eyvazova SD, Minasyan SM, Vlasov TD, Buryakina AB, Galagudza MM (2014) Modeling of postinfarction heart failure by occlusion of the left coronary artery in rats: techniques and methods of morphofunctional assessment. Biomedicine 3: 32–48. (In Russ.)]. https://cyberleninka.ru/article/n/modelirovanie-postinfarktnoy-serdechnoy-nedostatochnosti-putem-okklyuzii-levoy-koronarnoy-arterii-u-krys-tehnika-i-metody
  16. Эйвазова ШД, Карпов АА, Мухаметдинова ДВ, Ломакина АМ, Черепанов ДЕ, Ивкин ДЮ, Ваулина ДД, Чефу СГ, Галагудза ММ (2016) Подходы к морфометрической оценке ремоделирования сердца после инфаркта миокарда. Трансляц мед 3(6): 62–72. [Eyvazova ShD, Karpov AA, Mukhametdinova DV, Lomakina AM, Cherepanov DE, Ivkin DU, Vaulina DD, Cefu SG, Galagudza MM (2016) Approaches to morphometric assessment of cardiac remodeling after myocardial infarction. Translat med 3(6): 62–72. (In Russ.)]. https://doi.org/10.18705/2311-4495-2016-3-6-62-72
  17. Полякова ЕА (2022) Низкий уровень адипонектина в крови как фактор риска тяжелого течения ишемической болезни сердца. Атеросклероз и дислипидемии 1(46): 47–56. [Polyakova EA (2022) Low blood adiponectin levels as a risk factor for severe coronary heart disease. Atherosclerosis and dyslipidemia 1(46): 47–56. (In Russ.)]. https://cyberleninka.ru/article/n/nizkiy-uroven-adiponektina-v-krovi-kak-faktor-riska-tyazhelogo-techeniya-ishemicheskoy-bolezni-serdtsa
  18. Ojha N, Dhamoon AS (2021) Myocardial Infarction. StatPearls. Treasure Island (FL): StatPearls Publ PMID: 30725761.
  19. Hsu S, Fang JC, Borlaug BA (2022) Hemodynamics for the Heart Failure Clinician: A State-of-the-Art Review. J Card Fail 28(1): 133–148. https://doi.org/10.1016/j.cardfail.2021.07.012
  20. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP (1975) The Framingham Offspring Study. Design and preliminary data. Prev Med 4(4): 518–525. https://doi.org/10.1016/0091-7435(75)90037-7
  21. Mahjoub SK, Sattar Ahmad MAA, Kamel FO, Alseini M, Khan LM (2022) Preclinical study of vitamin D deficiency in the pathogenesis of metabolic syndrome in rats. Eur Rev Med Pharmacol Sci 26(23): 9001–9014. https://doi.org/10.26355/eurrev_202212_30575. PMID: 36524519
  22. Przybylski R, Mccune S, Hollis B, Simpson RU (2010) Vitamin D Deficiency In The Spontaneously Hypertensive Heart Failure [SHHF] Prone Rat. Nutr Metab Cardiovasc Dis 20(9): 641–646. https://doi.org/10.1016/j.numecd.2009.07.009
  23. Косматова ОВ, Мягкова МА, Скрипникова ИА (2020) Влияние витамина D и кальция на сердечно-сосудистую систему: вопросы безопасности. Профилакт мед 23(3): 140–148. [Kosmatova OV, Myagkova MA, Skripnikova IA (2020) The effect of vitamin D and calcium on the cardiovascular system: safety issues. Prevent Med 23(3): 140–148. (In Russ.)]. https://doi.org/10.17116/profmed202023031140
  24. Adamczak DM (2017) The Role of Toll-Like Receptors and Vitamin D in Cardiovascular Diseases. Int J Mol Sci 18(11): 2252. https://doi.org/10.3390/ijms18112252
  25. El-Gohary OA, Allam MM (2017) Effect of vitamin D on isoprenaline induced myocardial infarction in rats; possible role of Peroxisome Proliferator Activated Receptor-ɣ (PPAR-ɣ). Canad J Physiol Pharmacol 95(6): 641–646. https://doi.org/10.1139/cjpp-2016-0150

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences