Современные представления о фибробластах эндоневрия
- Авторы: Петрова Е.С.1, Колос Е.А.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 111, № 7 (2025)
- Страницы: 995-1017
- Раздел: ОБЗОРНЫЕ СТАТЬИ
- URL: https://kld-journal.fedlab.ru/0869-8139/article/view/691426
- DOI: https://doi.org/10.7868/S2658655X25070017
- EDN: https://elibrary.ru/mvgldi
- ID: 691426
Цитировать
Полный текст
Аннотация
Целью настоящего обзора явилось обобщение современных представлений о фибробластах эндоневрия периферических нервных проводников и их роли в репаративной регенерации нерва. Наряду со шванновскими клетками и макрофагами фибробласты являются основными по функциональной значимости клетками эндоневрия. В литературе имеется мало сведений об особенностях фибробластов и их роли в регенерации поврежденных нервных проводников. В обзоре представлены данные последних лет о морфофункциональных особенностях фибробластов эндоневрия, их происхождении в онтогенезе и их функциях. Дана характеристика иммуногистохимических маркеров, используемых для их идентификации. Подчеркивается необходимость исследования взаимодействий фибробластов с другими клетками нерва для выяснения их роли в регенерации нервных проводников после повреждения.
Ключевые слова
Об авторах
Е. С. Петрова
Институт экспериментальной медицины
Email: iempes@yandex.ru
Санкт-Петербург, Россия
Е. А. Колос
Институт экспериментальной медициныСанкт-Петербург, Россия
Список литературы
- Zochodne DW (2008) Neurobiology of peripheral nerveregeneration. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo: Cambridge Univer Press.
- Одинак ММ, Живолупов СА (2009) Заболевания и травмы периферической нервной системы (обобщение клинического и экспериментального опыта): руководство для врачей. СПб. СпецЛит. [Odinak MM, Zhivolupov SA (2009) Diseases and injuries of the peripheral nervous system (summary of clinical and experimental experience): a guide for doctors. St. Petersburg: SpetsLit. (In Russ)].
- Wang ML, Rivlin M, Graham JG, Beredjiklian PK (2019) Peripheral nerve injury, scarring, and recovery. Connective Tissue Res 60(1): 3–9. https://doi.org/10.1080/03008207.2018.1489381
- Madduri S, Gander B (2010) Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 15(2): 93–103. https://doi.org/10.1111/j.1529-8027.2010.00257.x
- Raginov IS, Chelyshev YA (2001) Sensory neurons and Schwann cells during pharmacological stimulation of a regenerating nerve. Neurosci Behav Physiol 31(6): 629–633. https://doi.org/10.1023/a:1012329429655
- Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N, Azkargorta M, Aurrekoetxea I, De Juan VG, Jefferies HB, Aspichueta P, Elortza F, Aransay AM, Martínez-Chantar ML, Baas F, Mato JM, Mirsky R, Woodhoo A, Jessen KR (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210(1): 153–168. https://doi.org/10.1083/jcb.201503019
- Carr MJ, Johnston AP (2017) Schwann cells as drivers of tissue repair and regeneration. Curr Opin Neurobiol 47: 52–57. https://doi.org/10.1016/j.conb.2017.09.003.gomes
- Petrova ES (2019) Current views on Schwann cells: devel-opment, plasticity, functions. J Evol Biochem Phys 55: 433–447. https://doi.org/10.1134/S0022093019060012
- Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, Li R, Deng LX (2021) Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res 16(1): 93–98. https://doi.org/10.4103/1673-5374.286956
- Челышев ЮА, Сайткулов КИ (2000) Развитие, фенотипическая характеристика и коммуникации шванновских клеток. Успехи физиол наук 31(3): 54–69. [Chelyshev YuA, Saitkulov KI (2000) Development, pheno-typic characteristics and communication of Schwanncells. Uspekhi fiziol nauk 31(3): 54–69. (In Russ)].
- Mirsky R, Jessen KR, Brennan A, Parkinson D, Dong Z, Meier C, Parmantier E, Lawson D (2002) Schwann cells as regulators of nerve development. J Physiol Paris 96(1-2): 17–24. https://doi.org/10.1016/s0928-4257(01)00076-6
- Bhatheja K, Field J (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38: 1995–1999. https://doi.org/10.1016/j.biocel.2006.05.007
- Griffin JW, Thompson WJ (2008) Biology and pathology of nonmyelinating Schwann cells. Glia 56(14): 1518–1531. https://doi.org/10.1002/glia.20778
- Kastriti ME, Adameyko I (2017) Specification, plasticity and evolutionary origin of peripheral glial cells. Curr Opin Neurobiol 47: 196–202. https://doi.org/10.1016/j.conb.2017.11.004
- Bosch-Queralt M, Fledrich R, Stassart RM (2023) Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 176: 105952. https://doi.org/10.1016/j.nbd.2022.105952
- Stassart RM, Gomez-Sanchez JA, Lloyd AC (2014) Schwann cells as orchestrators of nerve repair: implications for tissue regeneration and pathologies. Cold Spring Harb Perspect Biol 16(6): a041363. https://doi.org/10.1101/cshperspect.a041363
- Pinã-Oviedo S, Ortiz-Hidalgo C (2008) The normal and neoplastic perineurium. A review. Adv Anat Pathol 15: 147–164. https://doi.org/10.1097/PAP.0b013e31816f8519
- Piña AR, Martínez MM, de Almeida OP (2015) Glut-1, best immunohistochemical marker for perineurial cells. Head Neck Pathol 9(1): 104–106. https://doi.org/10.1007/s12105-014-0544-6
- Petrova ES, Kolos EA (2022) Current views on perineurial cells: unique origin, structure, functions. J Evol Biochem Physiol 58(1): 1–23. https://doi.org/10.1134/S002209302201001X
- Mueller M, Wacker K, Ringelstein EB, Hickey WF, Imai Y, Kiefer R (2001) Rapid response of identified resident endoneurial macrophages to nerve injury. Am J Pathol 159(6): 2187–2197. https://doi.org/10.1016/S0002-9440(10)63070-2
- Griffin JW, George R, Ho T (1993) Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52(6): 553–560. https://doi.org/10.1097/00005072-199311000-00001
- Петрова ЕС, Колос ЕА (2024) Изучение резидентных макрофагов эндоневрия седалищного нерва крысы. Матер VI Нац конгр регенерат мед СПб. Эко-Вектор. 764–765. [Petrova ES, Kolos EA (2024) Study of resident macrophages in the endoneurium of the rat sciatic nerve. Mater VI Nac Kongr Regenerat Med SPb. Eko-Vektor. 764–765. (In Russ)]. https://doi.org/10.17816/morph.konf2024
- Richard L, Topilko P, Magy L, Decouvelaere AV, Charnay P, Funalot B, Vallat JM (2012) Endoneurial fibroblast-like cells. J Neuropathol Exp Neurol 71: 938–947. https://doi.org/10.1097/NEN.0b013e318270a941
- Ноздрачев АД, Чумасов ЕИ (1999) Периферическая нервная система. СПб. Наука. [Nozdrachev AD, Chumasov EI (1999) Peripheral nervous system. SPb. Nauka. (In Russ)].
- Kucenas S (2015) Perineurial glia. Cold Spring Harb Perspect Biol 7(6): a020511. https://doi.org/10.1101/cshperspect.a020511
- Ren Z, Tan Y, Zhao L (2024) Cell heterogeneity and variability in peripheral nerve after injury. Int J Mol Sci 25: 3511. https://doi.org/10.3390/ijms25063511
- Yim AKY, Wang PL, Bermingham JR Jr, Hackett A, Strickland A, Miller TM, Ly C, Mitra RD, Milbrandt J (2022) Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nat Neurosci 25: 238–251. https://doi.org/10.1038/s41593-021-01005-1
- Carr MJ, Toma JS, Johnston APW, Steadman PE, Yuzwa SA, Mahmud N, Frankland PW, Kaplan DR, Miller FD (2019) Mesenchymal precursor cells in adult nerves contribute to mammalian tissue repair and regeneration. Cell Stem Cell 24: 240–256.e9. https://doi.org/10.1016/j.stem.2018.10.024
- Chen B, Banton MC, Singh L, Parkinson DB, Dun XP (2021) Single cell transcriptome data analysis defines the heterogeneity of peripheral nerve cells in homeostasis and regeneration. Front Cell Neurosci 15: 624826. https://doi.org/10.3389/fncel.2021.624826
- Zotter B, Dagan O, Brady J, Baloui H, Samanta J, Salzer JL (2022) Gli1 regulates the postnatal acquisition of peripheral nerve architecture. J Neurosci 42(2): 183–201. https://doi.org/10.1523/JNEUROSCI.3096-20.2021
- Richard L, Védrenne N, Vallat JM, Funalot B (2014) Characterization of endoneurial fibroblast-like cells from human and rat peripheral nerves. J Histochem Cytochem 62(6): 424–435. https://doi.org/10.1369/0022155414530994
- Ramon y Cahal S (1928) Degeneration and regeneration of the nervous system. V 1–2. L. Oxf. H. Milford.
- Nageotte J, Guyon L (1930) Reticulin. Am J Pathol 6(6): 631–654.5.
- Sorrell JM, Caplan AI (2009) Fibroblasts-a diverse population at the center of it all. Int Rev Cell Mol Biol 276: 161–214. https://doi.org/10.1016/S1937-6448(09)76004-6
- Laidlaw GF (1930) Silver Staining of the Endoneurial Fibers of the Cerebrospinal Nerves. Am J Pathol 6(4): 435–444.3.
- Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131: 5599–5612. https://doi.org/10.1242/dev.01429
- Le Lièvre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34(1): 125–154.
- Le Douarin NM, Dupin E (2018) The "beginnings" of the neural crest. Dev Biol 444(1): 3–13. https://doi.org/10.1016/j.ydbio.2018.07.019
- Пахомова НЮ, Строкова ЕЛ, Корыткин АА, Кожевников ВВ, Гусев АФ, Зайдман АМ (2023) История изучения нервного гребня (обзор). Сибирск научн мед журн 43(1): 13–29. [Pakhomova NY, Strokova EL, Korytkin AA, Kozhevnikov VV, Gusev AF, Zaidman AM (2023) The History of the Study of the Neural Crest (Overview). Sibirsk nauchn med zhurn 43(1): 13–29. (In Russ)]. https://doi.org/10.18699/SSMJ20230102
- Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: From the neural crest to the myelinated nerve. Glia 56: 1481–1490. https://doi.org/10.1002/glia.20723
- Furlan A, Adameyko I (2018) Schwann cell precursor: a neural crest cell in disguise? Dev Biol 444(1): 25–35. https://doi.org/10.1016/j.ydbio.2018.02.008
- Kastriti ME, Faure L, von Ahsen D, Bouderlique TG, Bostrom J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I (2022) Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 41(17): e108780. https://doi.org / 10.15252/embj.2021108780
- Mirancea N (2016) Telocyte – a particular cell phenotype. Infrastructure, relationships and putative functions. Rom J Morphol Embryol 57(1): 7–21.
- Mirancea N, Mirancea GV, Moroşanu AM (2022) Telocytes inside of the peripheral nervous system – a 3D endoneurial network and putative role in cell communication. Rom J Morphol Embryol 63(2): 335–347. https://doi.org/10.47162/RJME.63.2.05
- Díaz-Flores L, Gutiérrez R, García MP, Gayoso S, Gutiérrez E, Díaz-Flores L Jr, Carrasco JL (2020) Telocytes in the Normal and Pathological Peripheral Nervous System. Int J Mol Sci 21(12): 4320. https://doi.org/10.3390/ijms21124320
- Popescu LM, Faussone-Pellegrini MS (2010) Telocytes – a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to telocytes. J Cell Mol Med 14(4): 729–740. https://doi.org/10.1111/j.1582-4934.2010.01059.x
- Faussone Pellegrini MS, Popescu LM (2011) Telocytes. Biomol Concepts 2(6): 481–489. https://doi.org/10.1515/BMC.2011.039
- Низяева НВ, Марей МВ, Сухих ГТ, Щёголев АИ (2014) Интерстициальные пейсмейкерные клетки. Вестн Рос акад мед наук 69(7-8): 17–24. [Nizyaeva NV, Marej MV, Sukhikh GT, Shchyogolev AI (2014) Interstitial pacemaker cells. Vestn Ross akad med nauk 69(7-8): 17–24. (In Russ)]. https://doi.org/10.15690/vramn.v69i7-8.1105
- Одинцова ИА, Слуцкая ДР, Березовская ТИ (2022) Телоциты: локализация, структура, функции и значение в патологии. Гены и Клетки 17(1): 6–12. [Odincova IA, Sluckaya DR, Berezovskaya TI (2022) Telocytes: localization, structure, functions and significance in pathology. Geny i Kletki 17(1): 6–12. (In Russ)]. https://doi.org/10.23868/202205001
- Chen T, Li Y, Ni W, Wei Y, Li J, Yu J, Zhang L, Gao J, Zhou J, Zhang W, Xu H, Hu J (2020) Neural stem cell-conditioned medium inhibits inflammation in macrophages via Sirt-1 signaling pathway in vitro and promotes sciatic nerve injury recovery. Stem Cells and Develop https://doi.org/10.1089/scd.2020.0020
- Petrova ES, Kolos EA (2023) Immunohistochemical Study of Macrophages of Sciatic Rat Nerve after Damage and Subperineural Injection of Mesenchymal Stem Cells. Russ Physiol J 109(4): 466–476 (In Russ). https://doi.org/10.31857/S0869813923040076
- Трусов ГА, Чапленко АА, Семенова ИС, Мельникова ЕВ, Олефир ЮВ (2018) Применение проточной цитометрии для оценки качества биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение 18(1): 16–24. [Trusov GA, Chaplenko AA, Semenova IS, Mel'nikova EV, Olefir YuV (2018) Application of flow cytometry for quality assessment of biomedical cell products. BIOpreparaty. Profilaktika, diagnostika, lechenie 18(1): 16–24. (In Russ)]. https://doi.org/10.30895/2221-996KH-2018-18-1-16-24
- Lupatov AY, Vdovin AS, Vakhrushev IV, Poltavtseva RA, Yarygin KN (2015) Comparative analysis of the expression of surface markers on fibroblasts and fibroblast-like cells isolated from different human tissues. Bull Exp Biol Med 158(4): 537–543. https://doi.org/10.1007/s10517-015-2803-2
- Hill R (2009). Extracellular matrix remodelling in human diabetic neuropathy. J Anat 214: 219–225. https://doi.org/10.1111/j.1469-7580.2008.01026.x
- Yamamoto M, Okui N, Tatebe M, Shinohara T, Hirata H (2011) Regeneration of the perineurium after microsurgical resection examined with immunolabeling for tenascin-C and alpha smooth muscle actin. J Anat 218: 413–425. https://doi.org/10.1111/j.1469-7580.2011.01341.x
- Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammat 8: 109. https://doi.org/10.1186/1742-2094-8-109
- Колос ЕА (2023) Коннексин-43 в клетках регенерирующего седалищного нерва крысы. Морфология 161(3): 71–78. [Kolos EA (2023) Connexin-43 in regenerating rat sciatic nerve cells. Morfologiya 161(3): 71–78. (In Russ)]. https://doi.org/10.17816/morph.629037
- Civin CI, Almeida-Porada G, Lee MJ, Olweus J, Terstappen LW, Zanjani ED (1996) Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 88(11): 4102–4109. https://doi.org/10.1182/blood.V88.11.4102.4102
- Smeland EB, Funderud S, Kvalheim G, Gaudernack G, Rasmussen AM, Rusten L, Wang MW, Tindle RW, Blomhoff HK, Egeland T (1992) Isolation and characterization of human hematopoietic progenitor cells: an effective method for positive selection of CD34+ cells. Leukemia 6(8): 845–852.
- He Q, Yu F, Li Y, Sun J, Ding F (2020) Purification of fibroblasts and schwann cells from sensory and motor nerves in vitro. J Vis Exp 159: e60952. https://doi.org/10.3791/60952
- Levine JM, Nishiyama A (1996) The NG2 chondroitin sulfate proteoglycan: a multifunctional proteoglycan associated with immature cells. Perspect Dev Neurobiol 3(4): 245–259.
- Levine JM (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14(8): 4716–4730. https://doi.org/10.1523/JNEUROSCI.14-08-04716.1994
- Chiquet-Ehrismann R (2004) Tenascins. Int J Biochem Cell Biol 36(6): 986–990. https://doi.org/10.1016/j.biocel.2003.12.002
- Peng K, Sant D, Andersen N, Silvera R, Camarena V, Piñero G, Graham R, Khan A, Xu XM, Wang G, Monje PV (2020) Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts: an immunochemical and transcriptomics approach. Sci Rep 10(1): 18433. https://doi.org/10.1038/s41598-020-74128-3
- Fertala J, Rivlin M, Wang ML, Beredjiklian PK, Steplewski A, Fertala A (2020) Collagen-rich deposit formation in the sciatic nerve after injury and surgical repair: A study of collagen-producing cells in a rabbit model. Brain Behav 10(10): e01802. https://doi.org/10.1002/brb3.1802
- Du H, Chen D, Zhou Y, Han Z, Che G (2014) Fibroblast phenotypes in different lung diseases. J Cardiothorac Surg 9: 147. https://doi.org/10.1186/s13019-014-0147-z
- Лунина НА, Сафина ДР, Костровa СВ (2023) Ассоциированные с опухолью фибробласты: гетерогенность и бимодальность в онкогенезе. Мол биол 57(5): 739–770. [Lunina NA, Safina DR, Kostrov SV (2023) Cancer-Associated Fibroblasts: Heterogeneity and Bimodality in Oncogenesis. Mol Biol 57(5): 739–770. (In Russ)]. https://doi.org/10.31857/S0026898423050105
- Kolarcik CL, Catt K, Rost E, Albrecht IN, Bourbeau D, Du Z, Kozai TD, Luo X, Weber DJ, Cui XT (2015) Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J Neural Eng 12(1): 016008. https://doi.org/10.1088/1741-2560/12/1/016008
- Kolarcik CL, Castro CA, Lesniak A, Demetris AJ, Fisher LE, Gaunt RA, Weber DJ, Cui XT (2020) Host tissue response to floating microelectrode arrays chronically implanted in the feline spinal nerve. J Neural Eng 17(4): 046012. https://doi.org/10.1088/1741-2552/ab94d7
- Nissi R, Autio-Harmainen H, Marttila P, Sormunen R, Kivirikko KI (2001) Prolyl 4-hydroxylase isoenzymes I and II have different expression patterns in several human tissues. J Histochem Cytochem 49(9): 1143–1153. https://doi.org/10.1177/002215540104900908
- Sato H, Ishii Y, Yamamoto S, Azuma E, Takahashi Y, Hamashima T, Umezawa A, Mori H, Kuroda S, Endo S, Sasahara M (2016) PDGFR-β plays a key role in the ectopic migration of neuroblasts in cerebral stroke. Stem Cells 34(3): 685–698. https://doi.org/10.1002/stem.2212
- Zhou C, Liu B, Huang Y, Zeng X, You H, Li J, Zhang Y (2017) The effect of four types of artificial nerve graft structures on the repair of 10-mm rat sciatic nerve gap. J Biomed Mater Res A 105(11): 3077–3085. https://doi.org/10.1002/jbm.a.36172
- Hamidi H, Ivaska J (2017) Vascular morphogenesis: an integrin and fibronectin highway. Curr Biol 27(4): R158–R161. https://doi.org/10.1016/j.cub.2016.12.036
- Zent J, Guo LW (2018) Signaling mechanisms of myofibroblastic activation: outside-in and inside-out. Cell Physiol Biochem 49(3): 848–868. https://doi.org/10.1159/000493217
- Mohammadizadeh F, Heydari S (2020) Intracellular fibronectin expression in invasive breast carcinoma: is it related to significant clinicopathological hrognostic factors? Iran Red Crescent Med J 22(4): e98676. https://doi.org/10.5812/ircmj.98676
- Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257: 143–179. https://doi.org/10.1016/S0074-7696(07)57004-X
- Хлопин НГ (1946) Общебиологические и экспериментальные основы гистологии. М. Изд-во Акад наук СССР. [Hlopin NG (1946) General biological and experimental principles of histology. M. Izd-vo Akad nauk SSSR. (In Russ)].
- Михайлов ВП (1972) Классификация тканей и явления метоплазии в свете принципа тканевой детерминации. Архив анатом гистол эмбриол 63(6): 12–33. [Mihajlov VP (1972) Classification of tissues and phenomena of metaplasia in terms of the principle of tissue determination. Arhiv anatom gistol embriol 63(6): 12–33. (In Russ)].
- Raff MC, Fields KL, Hakomori SI, Mirsky R, Pruss RM, Winter J (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174(2): 283–308. https://doi.org/10.1016/0006-8993(79)90851-5
- Faniku C, Kong W, He L, Zhang M, Lilly G, Pepper JP (2021) Hedgehog signaling promotes endoneurial fibroblast migration and Vegf-A expression following facial nerve injury. Brain Res 1751: 147204. https://doi.org/10.1016/j.brainres.2020.147204
- Tricaud N, Park HT (2017) Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci 74 (22): 4049–4057. https://doi.org/10.1007/s00018-017-2565-2
- Zigmond RE, Echevarria FD (2019) Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 173: 102–121. https://doi.org/10.1016/j.pneurobio.2018.12.001
- Kolter J, Kierdorf K, Henneke P (2020) Origin and Differentiation of Nerve-Associated Macrophages. J Immunol 204(2): 271–279. https://doi.org/10.4049/jimmunol.1901077
- Zhang Z, Yu B, Gu Y, Zhou S, Qian T, Wang Y, Ding G, Ding F, Gu X (2016) Fibroblast-derived tenascin-C promotes Schwann cell migration through beta1-integrin dependent pathway during peripheral nerve regeneration. Glia 64(3): 374–385. https://doi.org/10.1002/glia.22934
- Dun XP, Parkinson DB (2020) Classic axon guidance molecules control correct nerve bridge tissue formation and precise axon regeneration. Neural Regen Res 15(1): 6–9. https://doi.org/10.4103/1673-5374.264441
- McDonald D, Cheng C, Chen Y, Zochodne D (2006) Early events of peripheral nerve regeneration. Neuron Glia Biol 2: 139–147. https://doi.org/10.1017/S1740925X05000347
- Lemke G (2006) Neuregulin-1 and myelination. Sci STKE 325: pe11. https://doi.org/10.1126/stke.3252006pe11
- Fornasari BE, El Soury M, Nato G, Fucini A, Carta G, Ronchi G, Crosio A, Perroteau I, Geuna S, Raimondo S, Gambarotta G (2020) Fibroblasts colonizing nerve conduits express high levels of soluble neuregulin1, a factor promoting Schwann cell dedifferentiation. Cells 9(6): 1366. https://doi.org/10.3390/cells9061366
- Saada A, Dunaevsky-Hutt A, Aamar A, Reichert F, Rotshenker S (1995) Fibroblasts that reside in mouse and frog injured peripheral nerves produce apolipoproteins. J Neurochem 64: 1996–2003. https://doi.org/10.1046/j.1471-4159.1995.64051996.x
- Ельчанинов АВ, Фатхудинов ТХ (2023) Макрофаги. Москва. ГЭОТАР-Медиа. [El`chaninov AV, Fatxudinov TX (2023) Macrophages. Moskva. GE`OTAR-Media. (In Russ)]. https://doi.org/10.33029/9704-7780-9-EAM-2023-1-208)
- Chen P, Piao X, Bonaldo P (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 130(5): 605–618. https://doi.org/10.1007/s00401-015-1482-4
- Heumann R, Korsching S, Bandtlow C, Thoenen H (1987) Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 104: 1623–1631. https://doi.org/10.1083/jcb.104.6.1623
- Зорина АИ, Бозо ИЯ, Зорин ВЛ, Черкасов ВР, Деев РВ (2011) Фибробласты дермы: особенности цитогенеза, цитофизиологии и возможности клинического применения. Клеточн трансплантол тканев инженер 6(2): 15–26. [Zorina AI, Bozo IYa, Zorin VL, Cherkasov VR, Deev RV (2011) Dermal fibroblasts: features of cytogenesis, cytophysiology and possibilities of clinical application. Kletochn transplantol tkanev inzhener 6(2): 15–26. (In Russ)].
- Zhao Y, Liang Y, Xu Z, Liu J, Liu X, Ma J, Sun C, Yang Y (2022) Exosomal miR-673-5p from fibroblasts promotes Schwann cell-mediated peripheral neuron myelination by targeting the TSC2/mTORC1/SREBP2 axis. J Biol Chem 298(3): 101718. https://doi.org/10.1016/j.jbc.2022.101718
- Bunge MB, Wood PM, Tynan LB, Bates ML, Sanes JR (1989) Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker. Science 243(4888): 229–231. https://doi.org/10.1126/science.2492115
- Hou H, Zhang L, Ye Z, Li J, Lian Z, Chen C, He R, Peng B, Xu Q, Zhang G, Gan W, Tang P (2016) Chitooligosaccharide inhibits scar formation and enhances functional recovery in a mouse model of sciatic nerve injury. Mol Neurobiol 53(4): 2249–2257. https://doi.org/10.1007/s12035-015-9196-0
- Ngeow WC (2010) Scar less: a review of methods of scar reduction at sites of peripheral nerve repair. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(3): 357–366. https://doi.org/10.1016/j.tripleo.2009.06.030
- Порсева ВВ, Преображенский НД, Маслюков ПМ (2023) Экспрессия парвальбумина в ГАД67-иммунореактивных нейронах промежуточной зоны грудного спинного мозга у мышей C57BL/6 в условиях сенсорной денервации. Рос журн боли 21(1): 13–18. [Porseva VV, Preobrazhensky ND, Maslyukov PM (2023) Expression of parvalbumin in GAD67-immunoreactive neurons of the intermediate zone of the thoracic spinal cord in C57BL/6 mice under conditions of sensory denervation. Ross zhurn boli 21(1): 13–18. (In Russ)]. https://doi.org/10.17116/pain20232101113
- Antunes SLG, Jardim MR, Vital RT, Pascarelli BMO, Nery JADC, Amadeu TP, Sales AM, da Costa EAF, Sarno EN (2019) Fibrosis: a distinguishing feature in the pathology of neural leprosy. Mem Inst Oswaldo Cruz 114: e190056. https://doi.org/10.1590/0074-02760190056
- Pradat PF, Delanian S (2013) Late radiation injury to peripheral nerves. Handb Clin Neurol 115: 743–758. https://doi.org/10.1016/B978-0-444-52902-2.00043-6
- Bisceglia M, Vigilante E, Ben-Dor D (2007) Neural lipofibromatous hamartoma: a report of two cases and review of the literature. Adv Anat Pathol 14(1): 46–52. https://doi.org/10.1097/PAP.0b013e31802f04b7
- Seddon HJ (1942) Classification of Nerve Injuries. Br Med J 2(4260): 237–239. https://doi.org/10.1136/bmj.2.4260.237
- Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain. 74(4): 491–516. https://doi.org/10.1093/brain/74.4.491
- Aman M, Mayrhofer-Schmid M, Schwarz D, Bendszus M, Daeschler SC, Klemm T, Kneser U, Harhaus L, Boecker AH (2023) Avoiding scar tissue formation of peripheral nerves with the help of an acellular collagen matrix. PLoS One 18(8): e0289677. https://doi.org/10.1371/journal.pone.0289677
Дополнительные файлы
