УПРАВЛЕНИЕ РАЗВОРОТОМ ТВЕРДОГО ТЕЛА (КОСМИЧЕСКОГО АППАРАТА) С КОМБИНИРОВАННЫМ КРИТЕРИЕМ ОПТИМАЛЬНОСТИ НА ОСНОВЕ КВАТЕРНИОНОВ
- Авторы: Левский М.В.1
- 
							Учреждения: 
							- Научно-исследовательский институт космических систем им. А.А. Максимова – филиал Государственного космического научно-производственного центра им. М.В. Хруничева
 
- Выпуск: № 5 (2023)
- Страницы: 58-78
- Раздел: Статьи
- URL: https://kld-journal.fedlab.ru/1026-3519/article/view/672676
- DOI: https://doi.org/10.31857/S0572329922600566
- EDN: https://elibrary.ru/QWIXGS
- ID: 672676
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Изучается динамическая задача оптимального разворота твердого тела (например, космического аппарата) из произвольного начального в назначенное конечное угловое положение при наличии ограничений на управляющие переменные. Время разворота не фиксировано. Для оптимизации программы управления вращением применяется комбинированный критерий качества, минимизируемый функционал объединяет в заданной пропорции энергетические затраты и длительность маневра. На основе принципа максимума Л.С. Понтрягина и кватернионных моделей управляемого движения твердого тела получено решение поставленной задачи. Условия оптимальности переориентации записаны в аналитической форме, и раскрыты свойства оптимального вращения. Для построения оптимальной программы вращения записаны формализованные уравнения и расчетные формулы. Оптимальное управление представлено в форме синтеза. Закон управления сформулирован в виде явной зависимости управляющих переменных от фазовых координат. Приведены аналитические уравнения и соотношения для нахождения оптимального движения. Даны ключевые соотношения, определяющие оптимальные значения параметров алгоритма управления вращением. Также описана конструктивная схема решения краевой задачи принципа максимума для произвольных условий разворота (начального и конечного положений и моментов инерции твердого тела). Для динамически симметричного твердого тела получено решение задачи переориентации в замкнутой форме. Представлены численный пример и результаты математического моделирования, демонстрирующие практическую реализуемость разработанного метода управления ориентацией космического аппарата.
Об авторах
М. В. Левский
Научно-исследовательский институт космических систем им. А.А. Максимова – филиал Государственного космического научно-производственного центра им. М.В. Хруничева
							Автор, ответственный за переписку.
							Email: levskii1966@mail.ru
				                					                																			                												                								Россия, Королев						
Список литературы
- Sinitsin L.I., Kramlikh A.V. Synthesis of the optimal control law for the reorientation of a nanosatellite using the procedure of analytical construction of optimal regulators // J. Phys.: Conf. Ser. 2021. V. 1745. P. 012053. https://doi.org/10.1088/1742-6596/1745/1/012053
- Велищанский М.А., Крищенко А.П., Ткачев С.Б. Синтез алгоритмов переориентации космического аппарата на основе концепции обратной задачи динамики // Изв. РАН. ТиСУ. 2003. № 5. С. 156–163.
- Junkins J.L., Turner J.D. Optimal Spacecraft Rotational Maneuvers. Elsevier, 1986. 515 p.
- Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в желаемое угловое положение // Изв. РАН. ТиСУ. 2018. № 5. С. 30–41. https://doi.org/10.1134/S106423071805012X
- Scrivener S., Thompson R. Survey of Time-optimal Attitude Maneuvers // J. Guid. Contr. Dyn. 1994. V. 17. № 2. P. 225–233.
- Zhou H., Wang D., Wu B., Ek Poh. Time-optimal reorientation for rigid satellite with reaction wheels // Int. J. Contr. 2012. V. 85. № 10. P. 1–12. https://doi.org/10.1134/S106423071805012X
- Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в гравитационно-устойчивое положение // Док. Ак. наук. 2018. Т. 480. № 6. С. 671–675. https://doi.org/10.1134/S1028335818060101
- Левский М.В. Применение принципа максимума Л.С. Понтрягина к задачам оптимального управления ориентацией космического аппарата // Изв. РАН. ТиСУ. 2008. № 6. С. 144–157. https://doi.org/10.1134/S1064230708060117
- Shen H., Tsiotras P. Time-optimal Control of Axi-symmetric Rigid Spacecraft with two Controls // AIAA J. Guid. Contr. Dyn. 1999. V. 22. № 5. P. 682–694. https://doi.org/10.2514/2.4436
- Молоденков A.В., Сапунков Я.Г. Аналитическое решение задачи оптимального по быстродействию разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2018. № 2. С. 131–147. https://doi.org/10.7868/S0002338818020117
- Бранец В.Н., Черток М.Б., Казначеев Ю.В. Оптимальный разворот твердого тела с одной осью симметрии // Космич. исслед. 1984. Т. 22. Вып. 3. С. 352–360.
- Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973. 320 с.
- Айпанов Ш.А., Жакыпов А.Т. Метод разделения переменных и его применение для задачи оптимального разворота космического аппарата // Космич. исслед. 2020. Т. 58. № 1. С. 73–84. https://doi.org/10.31857/S002342062001001X
- Стрелкова Н.А. Об оптимальной переориентации твердого тела // Проблемы механики управляемого движения. Нелинейные динамические системы. Пермь: ПГУ, 1990. С. 115–133.
- Левский М.В. Кинематически оптимальное управление переориентацией космического аппарата // Изв. РАН. ТиСУ. 2015. № 1. С. 119–136. https://doi.org/10.1134/S1064230714050116
- Зелепукина О.В., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента динамически симметричного твердого тела // Изв. РАН. МТТ. 2011. № 4. С. 31–49. https://doi.org/10.3103/S0025654411040030
- Бирюков В.Г., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента твердого тела // Изв. РАН. МТТ. 2014. № 5. С. 3–21. https://doi.org/10.3103/S002565441405001X
- Левский М.В. Синтез оптимального управления терминальной ориентацией космического аппарата с использованием метода кватернионов // Изв. РАН. МТТ. 2009. № 2. С. 7–24. https://doi.org/10.3103/S0025654409020022
- Levskii M.V. About Method for Solving the Optimal Control Problems of Spacecraft Spatial Orientation // Probl. Nonlin. Anal. Eng. Syst. 2015. V. 21. № 2. P. 61–75.
- Молоденков А.В., Сапунков Я.Г. Аналитическое решение задачи оптимального разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2016. № 6. С. 129–145. https://doi.org/10.1134/S1064230707020189
- Молоденков А.В., Сапунков Я.Г. Аналитическое квазиоптимальное решение задачи поворота осесимметричного твердого тела с комбинированным функционалом // Изв. РАН. ТиСУ. 2020. № 3. С. 39–49. https://doi.org/10.31857/S0002338820030105
- Сапунков Я.Г., Молоденков А.В. Аналитическое решение задачи оптимального в смысле комбинированного функционала разворота осесимметричного космического аппарата // Автоматика и телемеханика. 2021. № 7. С. 86–106. https://doi.org/10.31857/S0005231021070059
- Молоденков А.В., Сапунков Я.Г. Аналитическое приближенное решение задачи оптимального разворота космического аппарата при произвольных граничных условиях // Изв. РАН. ТиСУ. 2015. № 3. С. 170–180. https://doi.org/10.7868/S0002338815030142
- Левский М.В. Использование универсальных переменных в задачах оптимального управления ориентацией космических аппаратов // Мехатрон. автомат. управл. 2014. № 1. С. 53–59.
- Quang M. Lam. Robust and adaptive reconfigurable control for satellite attitude control subject to under-actuated control condition of reaction wheel assembly // Math. Eng. Sci. Aerosp. 2018. V. 9. № 1. P. 47–63.
- Levskii M.V. Special aspects in attitude control of a spacecraft, equipped with inertial actuators // J. Comp. Sci. Appl. Inform.Technol. 2017. V. 2. № 4. P. 1–9.
- Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. M.: Наука, 1983. 392 с.
- Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974. 488 с.
- Любушин А.А. О применении модификаций метода последовательных приближений для решения задач оптимального управления // ЖВМиМФ. 1982. Т. 22. № 1. С. 30–35.
- Левский М.В. Способ управления разворотом космического аппарата и система для его реализации. Патент на изобретение РФ № 2114771 // Бюллетень “Изобретения. Заявки и патенты”. 1998. № 19. С. 234–236.
- Левский М.В. Система управления пространственным разворотом космического аппарата. Патент на изобретение РФ № 2006431 // Бюллетень “Изобретения. Заявки и патенты”. 1994. № 2. С. 49–50.
- Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 328 с.
- Левский М.В. Устройство формирования параметров регулярной прецессии твердого тела. Патент на изобретение РФ № 2146638 // Бюллетень “Изобретения. Заявки и патенты”. 2000. № 8. С. 148.
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 







