Propofol and Sevoflurane Alleviate Malignant Biological Behavior and Cisplatin Resistance of Xuanwei Lung Adenocarcinoma by Modulating the Wnt/β-catenin Pathway and PI3K/AKT Pathway


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Recent studies have shown that propofol and sevoflurane, two common anesthetics, can prevent tumor development. The prevalence of lung adenocarcinoma in China is highest in Yunnan Xuanwei, and many patients with lung cancer in this area are often resistant to platinum-based treatments.

Objective:The objective of the study was to investigate the effects of propofol and sevoflurane on malignant biological behavior and cisplatin resistance of Xuanwei lung adenocarcinoma.

Methods:Herein, XWLC-05/R, a cisplatin-resistant cell line of XWLC-05 cells from Xuanwei lung adenocarcinoma, was constructed. The XWLC-05 cells and XWLC-05/R cells were treated with propofol and sevoflurane singly or as a combination and subjected to CCK-8 assay, clone formation tests, and flow cytometry analysis to assess the proliferation level of cells. The morphology and number of apoptotic bodies in XWLC-05 cells and XWLC-05/R were examined with a transmission electron microscope. The ANNEXIN V-FITC/PI and transwell assays were performed to evaluate apoptosis, invasion, and migration of the cells. Subsequently, we constructed a Xuanwei lung adenocarcinoma xenograft model to investigate the effects of propofol and sevoflurane on the tumorigenicity of XWLC-05 cells in vivo.

Results:Treatment with propofol and sevoflurane significantly inhibited proliferation, invasion, migration, and induced apoptosis of XWLC-05 and XWLC-05/R cells. These effects were more pronounced when propofol and sevoflurane were co-incubated with the cells. Moreover, both propofol and sevoflurane significantly inhibited Wnt/β- catenin and PI3K/AKT pathways. Moreover, the two drugs effects suppressed the malignant biological behavior of XWLC-05 cells and XWLC-05/R cells, and this effect was counteracted by 740Y-P (PI3K/AKT pathway activator) and Wnt pathway activator 1 (Wnt/β-catenin pathway activator). In vivo experiments confirmed that propofol and sevoflurane alleviated the tumorigenicity of XWLC-05 cells.

Conclusions:In summary, this study shows, for the first time, that propofol and sevoflurane decrease the proliferation, invasion, migration and induce apoptosis of XWLC-05 cells and XWLC-05/R cells by impeding the Wnt/β-catenin and PI3K/AKT signaling pathways, thereby alleviating the development of Xuanwei lung adenocarcinoma in vivo. Moreover, these effects are more pronounced when the two drugs are combined.

Авторлар туралы

Yuhang Quan

Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Shanshan Li

Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Yahong Wang

Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Guangshun Liu

Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Zhiyong Lv

Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University

Email: info@benthamscience.net

Zhonghui Wang

Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers, 2015, 1, 15009.doi: 10.1038/nrdp.2015.9 PMID: 27188576
  2. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.doi: 10.3322/caac.21262 PMID: 25651787
  3. Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2018, 68(4), 297-316.doi: 10.3322/caac.21446 PMID: 29846940
  4. Wang, X.; Li, J.; Duan, Y.; Wu, H.; Xu, Q.; Zhang, Y. Whole genome sequencing analysis of lung adenocarcinoma in Xuanwei, China. Thorac. Cancer, 2017, 8(2), 88-96.doi: 10.1111/1759-7714.12411 PMID: 28083984
  5. Xiao, Y.; Shao, Y.; Yu, X.; Zhou, G. The epidemic status and risk factors of lung cancer in Xuanwei City, Yunnan Province, China. Front. Med., 2012, 6(4), 388-394.doi: 10.1007/s11684-012-0233-3 PMID: 23224416
  6. Lin, H.; Ning, B.; Li, J.; Zhao, G.; Huang, Y.; Tian, L. Temporal trend of mortality from major cancers in Xuanwei, China. Front. Med., 2015, 9(4), 487-495.doi: 10.1007/s11684-015-0413-z PMID: 26303302
  7. Cao, Y.; Gao, H. Prevalence and causes of air pollution and lung cancer in Xuanwei City and Fuyuan County, Yunnan Province, China. Front. Med., 2012, 6(2), 217-220.doi: 10.1007/s11684-012-0192-8 PMID: 22573219
  8. Downward, G.S.; Hu, W.; Large, D.; Veld, H.; Xu, J.; Reiss, B.; Wu, G.; Wei, F.; Chapman, R.S.; Rothman, N.; Qing, L.; Vermeulen, R. Heterogeneity in coal composition and implications for lung cancer risk in Xuanwei and Fuyuan counties, China. Environ. Int., 2014, 68, 94-104.doi: 10.1016/j.envint.2014.03.019 PMID: 24721117
  9. Seow, W. J.; Hu, W.; Vermeulen, R.; Hosgood, H. D., III; Downward, G. S.; Chapman, R. S.; He, X.; Bassig, B. A.; Kim, C.; Wen, C.J.C.J.O.C. Household air pollution and lung cancer in China: A review of studies in Xuanwei. 2014, 33(10), 471.doi: 10.5732/cjc.014.10132
  10. Ho, K.F.; Chang, C.C.; Tian, L.; Chan, C.S.; Musa Bandowe, B.A.; Lui, K.H.; Lee, K.Y.; Chuang, K.J.; Liu, C.Y.; Ning, Z.; Chuang, H.C. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro. Environmental pollution (Barking, Essex : 1987), 2016, 218, 1262-1269.
  11. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.doi: 10.1038/nrc2167 PMID: 17625587
  12. Browning, R.J.; Reardon, P.J.T.; Parhizkar, M.; Pedley, R.B.; Edirisinghe, M.; Knowles, J.C.; Stride, E. Drug delivery strategies for platinum-based chemotherapy. ACS Nano, 2017, 11(9), 8560-8578.doi: 10.1021/acsnano.7b04092 PMID: 28829568
  13. Fisher, D.E. Apoptosis in cancer therapy: Crossing the threshold. Cell, 1994, 78(4), 539-542.doi: 10.1016/0092-8674(94)90518-5 PMID: 8069905
  14. Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
  15. Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.doi: 10.1038/onc.2011.384 PMID: 21892204
  16. Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev., 2012, 64(3), 706-721.doi: 10.1124/pr.111.005637 PMID: 22659329
  17. Zhang, L.; Wang, J.; Fu, Z.; Ai, Y.; Li, Y.; Wang, Y.; Wang, Y. Sevoflurane suppresses migration and invasion of glioma cells by regulating miR-146b-5p and MMP16. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3306-3314.doi: 10.1080/21691401.2019.1648282 PMID: 31385537
  18. Yu, B.; Gao, W.; Zhou, H.; Miao, X.; Chang, Y.; Wang, L.; Xu, M.; Ni, G. Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Dis. Markers, 2018, 21(3), 513-519.doi: 10.3233/CBM-170234 PMID: 29103019
  19. Liu, W.Z.; Liu, N. Propofol inhibits lung cancer A549 cell growth and epithelial-mesenchymal transition process by upregulation of MicroRNA-1284. Oncol. Res., 2018, 27(1), 1-8.doi: 10.3727/096504018X15172738893959 PMID: 29402342
  20. Zhang, W.; Wang, Y.; Zhu, Z.; Zheng, Y.; Song, B. Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int. J. Biol. Macromol., 2018, 120(Pt A), 975-984.doi: 10.1016/j.ijbiomac.2018.08.173
  21. Yi, W.; Li, D.; Guo, Y.; Zhang, Y.; Huang, B.; Li, X. Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637. Int. J. Mol. Med., 2016, 38(6), 1857-1863.doi: 10.3892/ijmm.2016.2797 PMID: 27840895
  22. Jun, I.J.; Jo, J.Y.; Kim, J.I.; Chin, J.H.; Kim, W.J.; Kim, H.R.; Lee, E.H.; Choi, I.C. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Sci. Rep., 2017, 7(1), 14020.doi: 10.1038/s41598-017-14147-9 PMID: 29070852
  23. Yan, F.-C.; Wang, Q.-Q.; Ruan, Y.-H.; Ma, L.-J.; Jia, J.-T.; Jin, K.-W. Establishment and biological characteristics of lung cancer cell line XWLC-05. 2007, 26(1), 21-25.
  24. Zhu, X.; Han, J.; Lan, H.; Lin, Q.; Wang, Y.; Sun, X. A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway regulates cisplatin-resistance in Non-Small Cell Lung Cancer (NSCLC). BMC Cancer, 2020, 20(1), 1190.doi: 10.1186/s12885-020-07680-w PMID: 33276753
  25. Hu, B.; Zhang, H.; Wang, Z.; Zhang, F.; Wei, H.; Li, L. LncRNA CCAT1/miR-130a-3p axis increases cisplatin resistance in non-small-cell lung cancer cell line by targeting SOX4. Cancer Biol. Ther., 2017, 18(12), 974-983.doi: 10.1080/15384047.2017.1385679 PMID: 29020498
  26. Kang, K.; Wang, Y. Sevoflurane inhibits proliferation and invasion of human ovarian cancer cells by regulating JNK and p38 MAPK signaling pathway. Drug Des. Devel. Ther., 2019, 13, 4451-4460.doi: 10.2147/DDDT.S223581 PMID: 32021086
  27. Gao, C.; Shen, J.; Meng, Z.X.; He, X.F. Sevoflurane inhibits glioma cells proliferation and metastasis through miRNA-124-3p/ROCK1 axis. Pathol. Oncol. Res., 2020, 26(2), 947-954.doi: 10.1007/s12253-019-00597-1 PMID: 30915607
  28. Yang, X.; Zheng, Y.T.; Rong, W. Sevoflurane induces apoptosis and inhibits the growth and motility of colon cancer in vitro and in vivo via inactivating Ras/Raf/MEK/ERK signaling. Life Sci., 2019, 239, 116916.doi: 10.1016/j.lfs.2019.116916 PMID: 31626792
  29. Polivka, J., Jr; Janku, F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol. Ther., 2014, 142(2), 164-175.doi: 10.1016/j.pharmthera.2013.12.004 PMID: 24333502
  30. Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999.doi: 10.1016/j.cell.2017.05.016 PMID: 28575679
  31. Glen, J.B.I. The discovery and development of propofol anesthesia: The 2018 Lasker-DeBakey clinical medical research award. JAMA, 2018, 320(12), 1235-1236.doi: 10.1001/jama.2018.12756 PMID: 30208399
  32. Walsh, C.T. Propofol: Milk of amnesia. Cell, 2018, 175(1), 10-13.doi: 10.1016/j.cell.2018.08.031 PMID: 30217361
  33. Perry, N.J.S.; Buggy, D.; Ma, D. Can anesthesia influence cancer outcomes after surgery? JAMA Surg., 2019, 154(4), 279-280.doi: 10.1001/jamasurg.2018.4619 PMID: 30649136
  34. Liu, Q.; Sheng, Z.; Cheng, C.; Zheng, H.; Lanuti, M.; Liu, R.; Wang, P.; Shen, Y.; Xie, Z. Anesthetic propofol promotes tumor metastasis in lungs via GABAA R-dependent TRIM21 modulation of Src expression. Adv. Sci. (Weinh.), 2021, 8(18), e2102079.doi: 10.1002/advs.202102079 PMID: 34263559
  35. Mammoto, T.; Mukai, M.; Mammoto, A.; Yamanaka, Y.; Hayashi, Y.; Mashimo, T.; Kishi, Y.; Nakamura, H. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett., 2002, 184(2), 165-170.doi: 10.1016/S0304-3835(02)00210-0 PMID: 12127688
  36. Miao, Y.; Zhang, Y.; Wan, H.; Chen, L.; Wang, F. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed. Pharmacother., 2010, 64(9), 583-588.doi: 10.1016/j.biopha.2010.03.006 PMID: 20888181
  37. Zhang, L.; Wang, N.; Zhou, S.; Ye, W.; Jing, G.; Zhang, M. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2. J. Exp. Clin. Cancer Res., 2012, 31(1), 66.doi: 10.1186/1756-9966-31-66 PMID: 22901367
  38. Meng, C.; Song, L.; Wang, J.; Li, D.; Liu, Y.; Cui, X. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231. Oncol. Rep., 2017, 37(2), 841-848.doi: 10.3892/or.2016.5332 PMID: 28035403
  39. Ciechanowicz, S.; Zhao, H.; Chen, Q.; Cui, J.; Mi, E.; Mi, E.; Lian, Q.; Ma, D. Differential effects of sevoflurane on the metastatic potential and chemosensitivity of non-small-cell lung adenocarcinoma and renal cell carcinoma in vitro. Br. J. Anaesth., 2018, 120(2), 368-375.doi: 10.1016/j.bja.2017.11.066 PMID: 29406185
  40. Fan, L.; Wu, Y.; Wang, J.; He, J.; Han, X. Sevoflurane inhibits the migration and invasion of colorectal cancer cells through regulating ERK/MMP-9 pathway by up-regulating miR-203. Eur. J. Pharmacol., 2019, 850, 43-52.doi: 10.1016/j.ejphar.2019.01.025 PMID: 30685432
  41. Zhang, W.; Sheng, B.; Chen, S.; Zhao, H.; Wu, L.; Sun, Y.; Cui, J.; Zhu, X.; Ma, D. Sevoflurane enhances proliferation, metastatic potential of cervical cancer cells via the histone deacetylase 6 modulation in vitro. Anesthesiology, 2020, 132(6), 1469-1481.doi: 10.1097/ALN.0000000000003129 PMID: 32412720
  42. Liang, H.; Yang, C.X.; Zhang, B.; Zhao, Z.L.; Zhong, J.Y.; Wen, X.J. Sevoflurane attenuates platelets activation of patients undergoing lung cancer surgery and suppresses platelets-induced invasion of lung cancer cells. J. Clin. Anesth., 2016, 35, 304-312.doi: 10.1016/j.jclinane.2016.08.008 PMID: 27871548
  43. Zhang, Z.; Yu, W.; Zheng, M.; Liao, X.; Wang, J.; Yang, D.; Lu, W.; Wang, L.; Zhang, S.; Liu, H.; Zhou, X.Z.; Lu, K.P. Pin1 inhibition potently suppresses gastric cancer growth and blocks PI3K/AKT and Wnt/β-catenin oncogenic pathways. Mol. Carcinog., 2019, 58(8), 1450-1464.doi: 10.1002/mc.23027 PMID: 31026381
  44. Zhang, L.N.; Zhao, L.; Yan, X.L.; Huang, Y.H. Loss of G3BP1 suppresses proliferation, migration, and invasion of esophageal cancer cells via Wnt/β-catenin and PI3K/AKT signaling pathways. J. Cell. Physiol., 2019, 234(11), 20469-20484.doi: 10.1002/jcp.28648 PMID: 30989663
  45. Du, Q.; Zhang, X.; Zhang, X.; Wei, M.; Xu, H.; Wang, S. Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1265-1271.doi: 10.1080/21691401.2019.1594000 PMID: 30942630
  46. Chen, M.; Zhou, L.; Liao, Z.; Ye, X.; Xuan, X.; Gu, B.; Lu, F. Sevoflurane inhibited osteosarcoma cell proliferation and invasion via targeting miR-203/WNT2B/Wnt/β-catenin axis. Cancer Manag. Res., 2019, 11, 9505-9515.doi: 10.2147/CMAR.S225911 PMID: 31814757
  47. Gao, C.; He, X.F.; Xu, Q.R.; Xu, Y.J.; Shen, J. Sevoflurane downregulates insulin-like growth factor-1 to inhibit cell proliferation, invasion and trigger apoptosis in glioma through the PI3K/AKT signaling pathway. Anticancer Drugs, 2019, 30(7), e0744.PMID: 31305291

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2022