Carbon Nanotubes in Breast Cancer Treatment: An Insight into Properties, Functionalization, and Toxicity


Цитировать

Полный текст

Аннотация

Breast cancer is the most common cancer among women worldwide. It is the main reason why women die from cancer. Early diagnosis due to increased public awareness and better screening helps to tackle the disease through surgical resection and curative therapies. Chemotherapies are frequently used for cancer treatment, but these have severe adverse effects due to a lack of target specificity. Formulation development scientists and clinicians are now particularly concerned with developing safe and efficient drug delivery systems for breast cancer treatment. Potentially relevant literature to get the latest developments and updated information related to properties, functionalization, toxicity and application of carbon nanotubes in breast cancer treatment has been obtained from Web of Science, Scopus, and PubMed portals. Nanomedicine has emerged as a novel tool for target-specific delivery systems and other biomedical applications. Carbon nanotubes (CNTs) are gaining popularity due to their unique mechanical and physiochemical properties for the diagnosis and treatment of cancer. It is a promising carrier that can deliver micro and macromolecules to the cancer cell. CNTs can be functionalized at the surface with different functional groups, which helps in targeting the drugs to target cancer cells. The present review has elaborated on different functionalization approaches and toxicity aspects of CNTs.

Об авторах

Neha Srivastava

School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Yachana Mishra

School of Bioengineering and Biosciences, Lovely Professional University

Email: info@benthamscience.net

Vijay Mishra

School of Pharmaceutical Sciences, Lovely Professional University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Abhigyan Ranjan

School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Murtaza Tambuwala

Department of Pharmacology and Therapeutics, Lincoln Medical School,, , University of Lincoln,

Email: info@benthamscience.net

Список литературы

  1. Khan, R.; Arshad, F.; Hassan, I.U.; Naikoo, G.A.; Pedram, M.Z.; Zedegan, M.S.; Pourfarzad, H.; Aljabali, A.A.A.; Serrano-Aroca, Á.; Haggag, Y.; Mishra, V.; Mishra, Y.; Birkett, M.; Tambuwala, M.M. Advances in nanomaterial-based immunosensors for prostate cancer screening. Biomed. Pharmacother., 2022, 155, 113649. doi: 10.1016/j.biopha.2022.113649 PMID: 36108389
  2. Gupta, M.; Mishra, Y.; Mishra, V.; Tambuwala, M.M. Current update on anticancer effects of icariin: A journey of the last ten years. EXCLI J., 2022, 21, 680-686. PMID: 35721576
  3. Mishra, Y.; Amin, H.I.M.; Mishra, V.; Vyas, M.; Prabhakar, P.K.; Gupta, M.; Kanday, R.; Sudhakar, K.; Saini, S. Hromić-Jahjefendić A.; Aljabali, A.A.A.; El-Tanani, M.; Serrano-Aroca, Ã.; Bakshi, H.; Tambuwala, M.M. Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomed. Pharmacother., 2022, 153, 113413. doi: 10.1016/j.biopha.2022.113413 PMID: 36076482
  4. Damasco, J.A.; Ravi, S.; Perez, J.D.; Hagaman, D.E.; Melancon, M.P. Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine. Nanomaterials, 2020, 10(11), 2186. doi: 10.3390/nano10112186 PMID: 33147800
  5. Mishra, Y.; Mishra, V.; Tambuwala, M.M. Tumor adhesion molecule targeting for breast cancer nanomedicine.In: Targeted Nanomedicine for Breast Cancer Therapy; Academic Press, Elsevier Science B.V: Amsterdam, 2022, pp. 257-280. doi: 10.1016/B978-0-12-824476-0.00011-5
  6. Seidi, F.; Jenjob, R.; Phakkeeree, T.; Crespy, D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J. Control. Release, 2018, 284, 188-212. doi: 10.1016/j.jconrel.2018.06.026 PMID: 29940204
  7. Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453. doi: 10.1016/j.apsb.2015.07.003 PMID: 26579474
  8. Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18. doi: 10.1016/j.jare.2018.06.005 PMID: 30581608
  9. Rompicherla, N.C.; Joshi, P.; Shetty, A.; Sudhakar, K.; Amin, H.I.M.; Mishra, Y.; Mishra, V.; Albutti, A.; Alhumeed, N. Design, formulation, and evaluation of aloe vera gel-based capsaicin transemulgel for osteoarthritis. Pharmaceutics, 2022, 14(9), 1812. doi: 10.3390/pharmaceutics14091812 PMID: 36145560
  10. Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982. doi: 10.3390/molecules25173982 PMID: 32882920
  11. Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol., 2021, 69, 226-237. doi: 10.1016/j.semcancer.2019.10.020 PMID: 31704145
  12. Shoukat, R.; Khan, M.I. Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst. Technol., 2021, 27(12), 4183-4192. doi: 10.1007/s00542-021-05211-6
  13. Mishra, V.; Kesharwani, P.; Jain, N.K. Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(4), 293-330. doi: 10.1615/CritRevTherDrugCarrierSyst.2018014419 PMID: 29972680
  14. Kesharwani, P.; Mishra, V.; Jain, N.K. Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov. Today, 2015, 20(9), 1049-1060. doi: 10.1016/j.drudis.2015.05.004 PMID: 25997997
  15. Mehra, N.K.; Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283. doi: 10.1016/j.biomaterials.2013.10.032 PMID: 24210872
  16. Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B, 2021, 268(3), 115095. doi: 10.1016/j.mseb.2021.115095
  17. Bahreyni, A.; Mohamud, Y.; Luo, H. Emerging nanomedicines for effective breast cancer immunotherapy. J. Nanobiotechnology, 2020, 18(1), 180. doi: 10.1186/s12951-020-00741-z PMID: 33298099
  18. Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
  19. El-Tanani, M.; Platt-Higgins, A.; Lee, Y.F.; Al Khatib, A.O.; Haggag, Y.; Sutherland, M.; Zhang, S.D.; Aljabali, A.A.A.; Mishra, V.; Serrano-Aroca, Á.; Tambuwala, M.M.; Rudland, P.S. Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer. Life Sci., 2022, 310, 121046. doi: 10.1016/j.lfs.2022.121046 PMID: 36209829
  20. Sheikh-Hosseini, M.; Larijani, B.; Gholipoor Kakroodi, Z.; Shokoohi, M.; Moarefzadeh, M.; Sayahpour, F.A.; Goodarzi, P.; Arjmand, B. Gene therapy as an emerging therapeutic approach to breast cancer: New Developments and Challenges. Hum. Gene Ther., 2021, 32(21-22), hum.2020.199. doi: 10.1089/hum.2020.199 PMID: 33307949
  21. Liu, D.; Zhang, W.; Liu, X.; Qiu, R. Precise engineering of hybrid molecules-loaded macromolecular nanoparticles shows in vitro and in vivo antitumor efficacy toward the treatment of nasopharyngeal cancer cells. Drug Deliv., 2021, 28(1), 776-786. doi: 10.1080/10717544.2021.1902022 PMID: 33866910
  22. Wang, L. Early diagnosis of breast cancer. Sensors, 2017, 17(7), 1572, 1-20. doi: 10.3390/s17071572
  23. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  24. Ma, J.; Jemal, A.; Fedewa, S.A.; Islami, F.; Lichtenfeld, J.L.; Wender, R.C.; Cullen, K.J.; Brawley, O.W. The American Cancer Society 2035 challenge goal on cancer mortality reduction. CA Cancer J. Clin., 2019, 69(5), 351-362. doi: 10.3322/caac.21564 PMID: 31066919
  25. Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Peng, Q.; Ruttkay-Nedecky, B.; Milnerowicz, H.; Kizek, R. Carbon nanomaterials for targeted cancer therapy drugs: A critical review. Chem. Rec., 2019, 19(2-3), 502-522. doi: 10.1002/tcr.201800038 PMID: 30156367
  26. Aqel, A.; El-Nour, K.M.M.A.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem., 2012, 5(1), 1-23. doi: 10.1016/j.arabjc.2010.08.022
  27. Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact., 2019, 307, 206-222. doi: 10.1016/j.cbi.2019.04.036 PMID: 31054282
  28. Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine, 2008, 4(3), 173-182. doi: 10.1016/j.nano.2008.04.002 PMID: 18550451
  29. Pandey, P.; Dahiya, M. Carbon nanotubes: Types, methods of preparation and applications. Int. J. Pharm. Sci. Res., 2016, 1(4), 15-21.
  30. Abdallah, B.; Elhissi, A.M.; Ahmed, W.; Najlah, M. Carbon nanotubes drug delivery system for cancer treatment.In: Advances in Medical and Surgical Engineering; Ahmed, W., Ed.; Elsevier Science B.V: Amsterdam, 2020, pp. 313-332. doi: 10.1016/B978-0-12-819712-7.00016-4
  31. Karimi, M.; Solati, N.; Ghasemi, A.; Estiar, M.A.; Hashemkhani, M.; Kiani, P.; Mohamed, E.; Saeidi, A.; Taheri, M.; Avci, P.; Aref, A.R.; Amiri, M.; Baniasadi, F.; Hamblin, M.R. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv., 2015, 12(7), 1089-1105. doi: 10.1517/17425247.2015.1004309 PMID: 25613837
  32. Kushwaha, S.K.S.; Ghoshal, S.; Rai, A.K.; Singh, S.; Singh, S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: A review. Braz. J. Pharm. Sci., 2013, 49(4), 629-643. doi: 10.1590/S1984-82502013000400002
  33. Krishnegowda, J.; Shivanna, S.; Kullaiah, B.; Lingaraju, S.; Mavinakere, A.R. Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition. J. Nanomater., 2015, 2015, 6.
  34. Badea, M.; Prodana, M.; Dinischiotu, A.; Crihana, C.; Ionita, D.; Balas, M. Cisplatin loaded multi-walled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics, 2018, 10(4), 228. doi: 10.3390/pharmaceutics10040228 PMID: 30428555
  35. Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev., 2020, 120(5), 2693-2758. doi: 10.1021/acs.chemrev.9b00835 PMID: 32039585
  36. Wu, Q.; Lv, H.; Zhao, L. Applications of carbon nanomaterials in chiral separation. TrAC -. Trends Analyt. Chem., 2020, 129(115941), 1-48.
  37. Skandani, A.A.; Zeineldin, R.; Al-Haik, M. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes. Langmuir, 2012, 28(20), 7872-7879. doi: 10.1021/la3011162 PMID: 22545729
  38. Contreras, M.L.; Torres, C.; Villarroel, I.; Rozas, R. Molecular dynamics assessment of doxorubicin–carbon nanotubes molecular interactions for the design of drug delivery systems. Struct. Chem., 2019, 30(1), 369-384. doi: 10.1007/s11224-018-1210-5
  39. Vardharajula, S.; Ali, S.Z.; Tiwari, P.M. Eroğlu, E.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized carbon nanotubes: Biomedical applications. Int. J. Nanomedicine, 2012, 7(5361), 5361-5374. PMID: 23091380
  40. Kharissova, O.V.; Kharisov, B.I.; de Casas Ortiz, E.G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances, 2013, 3(47), 24812-24852. doi: 10.1039/c3ra43852j
  41. Tayyab, S.; Naqvi, R.; Rasheed, T.; Hussain, D.; Najam, M.; Majeed, S.; Ahmed, N.; Nawaz, R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J. Mol. Liq., 2019, 297, 111919.
  42. Jackman, H.; Jackman, H. Mechanical properties of carbon nanotubes and nanofibers; Karlstad University Studies, 2012, pp. 1-71.
  43. Singh, I.; Rehni, A.K.; Kumar, P. Fullerenes, carbon nanotubes : Synthesis, properties and pharmaceutical applications. Fuller nanotub Car N., 2013, 17(4), 361-377.
  44. Raval, J.P.; Joshi, P.; Chejara, D.R. Carbon nanotube for targeted drug delivery. In: Woodhead Publishing Series in Biomaterials, Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Sawston, Cambridge, 2018, pp. 203-216.
  45. Kumar, S.P.; Gunasundari, E. Nanocomposites: Recent trends and engineering applications. Nano Hybrids and Composites, 2018, 20, 65-80. doi: 10.4028/ href='www.scientific.net/NHC.20.65' target='_blank'>www.scientific.net/NHC.20.65
  46. Mallakpour, S.; Soltanian, S. RSC Advances Fabrication and Applications. RSC Advances, 2016, (111), 109916-109935. doi: 10.1039/C6RA24522F
  47. Saka, C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Crit. Rev. Anal. Chem., 2018, 48(1), 1-14. doi: 10.1080/10408347.2017.1356699 PMID: 28722465
  48. Huang, Z.; Xi, L.; Subhani, Q.; Yan, W.; Guo, W.; Zhu, Y. Covalent functionalization of multi-walled carbon nanotubes with quaternary ammonium groups and its application in ion chromatography. Carbon, 2013, 62, 127-134. doi: 10.1016/j.carbon.2013.06.004
  49. Sadegh, H.; Shahryari-ghoshekandi, R.; Kazemi, M. Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int. Nano Lett., 2014, 4(4), 129-135. doi: 10.1007/s40089-014-0128-1
  50. Meng, L.; Fu, C.; Lu, Q. Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci., 2009, 19(7), 801-810. doi: 10.1016/j.pnsc.2008.08.011
  51. Li, Z.; de Barros, A.L.B.; Soares, D.C.F.; Moss, S.N.; Alisaraie, L.; Nicole, S.; Alisaraie, L. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int. J. Pharm., 2017, 524(1-2), 41-54. doi: 10.1016/j.ijpharm.2017.03.017 PMID: 28300630
  52. Sharma, S.; Kumar, P.; Chandra, R. Mechanical and thermal properties of graphene–carbon nanotube-reinforced metal matrix composites: A molecular dynamics study. J. Compos. Mater., 2017, 51(23), 3299-3313. doi: 10.1177/0021998316682363
  53. Wulan, P.P.D.K.; Ulwani, S.H.; Wulandari, H.; Purwanto, W.W.; Mulia, K. The effect of hydrochloric acid addition to increase carbon nanotubes dispersibility as drug delivery system by covalent functionalization. In IOP conference series. Mater. Sci. Eng. C, 2018, 1, 012013.
  54. Hashemzadeh, H.; Raissi, H. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: A molecular dynamics simulation study. J. Mol. Model., 2017, 23(8), 222. doi: 10.1007/s00894-017-3391-z PMID: 28702805
  55. Zhou, Y.; Fang, Y.; Ramasamy, R. Non-covalent functionalization of carbon nanotubes for electrochemical. Sensors, 2019, 19(2), 392. doi: 10.3390/s19020392 PMID: 30669367
  56. Gao, C.; Guo, Z.; Liu, J.H.; Huang, X.J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale, 2012, 4(6), 1948-1963. doi: 10.1039/c2nr11757f PMID: 22337209
  57. Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors, 2019, 19(2), 392. doi: 10.3390/s19020392
  58. Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558. doi: 10.1016/j.ijpharm.2018.07.027 PMID: 29997043
  59. Sharma, S.; Naskar, S.; Kuotsu, K. Metronomic chemotherapy of carboplatin-loaded PEGylated MWCNTs: Synthesis, characterization and in vitro toxicity in human breast cancer. Carbon Lett., 2020, 30(4), 435-447. doi: 10.1007/s42823-019-00113-0
  60. Yu, S.; Zhang, Y.; Chen, L.; Li, Q.; Du, J.; Gao, Y.; Zhang, L.; Yang, Y. Antitumor effects of carbon nanotube-drug complex against human breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1103-1110. doi: 10.3892/etm.2016.3444 PMID: 30116361
  61. Mehra, N.K.; Jain, N.K. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol. Pharm., 2015, 12(2), 630-643. doi: 10.1021/mp500720a PMID: 25517904
  62. Yang, S.; Wang, Z.; Ping, Y.; Miao, Y.; Xiao, Y.; Qu, L.; Zhang, L.; Hu, Y.; Wang, J. PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: Synthesis, characterization, and in vitro evaluation. Beilstein J. Nanotechnol., 2020, 11(1), 1728-1741. doi: 10.3762/bjnano.11.155 PMID: 33224703
  63. Mehra, N.K.; Jain, N.K. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J. Drug Target., 2013, 21(8), 745-758. doi: 10.3109/1061186X.2013.813028 PMID: 23822734
  64. Cao, X.; Du, X.; Jiao, H.; An, Q.; Chen, R.; Fang, P.; Wang, J.; Yu, B. Carbohydrate-based drugs launched during 2000-2021. Acta Pharm. Sin. B, 2022, 12(10), 3783-3821. doi: 10.1016/j.apsb.2022.05.020 PMID: 36213536
  65. Gim, S.; Zhu, H.; Seeberger, P.H.; Delbianco, M. Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(5), e1558. doi: 10.1002/wnan.1558
  66. Al-Sawaftah, N.M.; Abusamra, R.H.; Husseini, G.A. Carbohydrate-functionalized liposomes in cancer therapy. Curr. Cancer Ther. Rev., 2021, 17(1), 4-20. doi: 10.2174/1573394716999200626144921
  67. Apostol, C.R.; Hay, M.; Polt, R. Glycopeptide drugs: A pharmacological dimension between "Small Molecules" and "Biologics". Peptides, 2020, 131(170369), 170369. doi: 10.1016/j.peptides.2020.170369 PMID: 32673700
  68. Khan, H.; Mirzaei, H.R.; Amiri, A.; Akkol, K.E.; Ashhad Halimi, S.M.; Mirzaei, H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin. Cancer Biol., 2021, 69, 24-42. doi: 10.1016/j.semcancer.2019.12.004 PMID: 31870939
  69. Chen, F.; Huang, G.; Huang, H. Sugar ligand-mediated drug delivery. Future Med. Chem., 2020, 12(2), 161-171. doi: 10.4155/fmc-2019-0114 PMID: 31718289
  70. Gao, H.; Huang, G. Synthesis, anticancer activity and cytotoxicity of galactosylated epothilone B. Bioorg. Med. Chem., 2018, 26(20), 5578-5581. doi: 10.1016/j.bmc.2018.10.005 PMID: 30318441
  71. Gadekar, A.; Bhowmick, S.; Pandit, A. A glycotherapeutic approach to functionalize biomaterials-based systems. Adv. Funct. Mater., 2020, 30(44), 1910031. doi: 10.1002/adfm.201910031
  72. Cai, L.; Gu, Z.; Zhong, J.; Wen, D.; Chen, G.; He, L.; Wu, J.; Gu, Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov., 2018, 23(5), 1126-1138. PMID: 29501708
  73. Mosaiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv. Drug Deliv. Rev., 2019, 151-152, 94-129. doi: 10.1016/j.addr.2019.09.002 PMID: 31513827
  74. Liu, R.; Li, H.; Gao, X.; Mi, Q.; Zhao, H.; Gao, Q. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1. Biochem. Biophys. Res. Commun., 2017, 487(1), 34-40. doi: 10.1016/j.bbrc.2017.04.004 PMID: 28385528
  75. Fahrenholtz, C.D.; Hadimani, M.; King, S.B.; Torti, S.V.; Singh, R. Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine, 2015, 10(16), 2481-2497. doi: 10.2217/nnm.15.90 PMID: 26296098
  76. Dong, Z.; Wang, Q.; Huo, M.; Zhang, N.; Li, B.; Li, H.; Xu, Y.; Chen, M.; Hong, H.; Wang, Y. Mannose-modified multi-walled carbon nanotubes as a delivery nanovector optimizing the antigen presentation of dendritic cells. ChemistryOpen, 2019, 8(7), 915-921. doi: 10.1002/open.201900126 PMID: 31338275
  77. Sharma, P.; Jain, K.; Jain, N.K.; Mehra, N.K. Ex vivo and in vivo performance of anti-cancer drug loaded carbon nanotubes. J. Drug Deliv. Sci. Technol., 2017, 41, 134-143. doi: 10.1016/j.jddst.2017.07.011
  78. Ozgen, P.S.O.; Atasoy, S.; Kurt, B.Z.; Durmus, Z.; Yigit, G.; Dag, A. Glycopolymer decorated multi-walled carbon nanotubes for dual-targeted breast cancer therapy. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(15), 3123-3137.
  79. Passi, A.; Vigetti, D. Hyaluronan as tunable drug delivery system. Adv. Drug Deliv. Rev., 2019, 146, 83-96. doi: 10.1016/j.addr.2019.08.006 PMID: 31421148
  80. Tripodo, G.; Trapani, A.; Torre, M.L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. Eur. J. Pharm. Biopharm., 2015, 97(Pt B), 400-416. doi: 10.1016/j.ejpb.2015.03.032 PMID: 26614559
  81. Gallo, N.; Nasser, H.; Salvatore, L.; Natali, M.L.; Campa, L.; Mahmoud, M.; Capobianco, L.; Sannino, A.; Madaghiele, M. Hyaluronic acid for advanced therapies: Promises and challenges. Eur. Polym. J., 2019, 117, 134-147. doi: 10.1016/j.eurpolymj.2019.05.007
  82. Prajapati, S.K.; Jain, A.; Shrivastava, C.; Jain, A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol., 2019, 123, 691-703. doi: 10.1016/j.ijbiomac.2018.11.116 PMID: 30445095
  83. Liu, D.; Zhang, Q.; Wang, J.; Fan, L.; Zhu, W.; Cai, D. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie, 2019, 74(2), 83-90. PMID: 30782256
  84. Singhai, N.J.; Maheshwari, R.; Ramteke, S. CD44 receptor targeted 'smart'multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun., 2020, 35(100235), 1-12.
  85. Arpicco, S.; Bartkowski, M.; Barge, A.; Zonari, D.; Serpe, L.; Milla, P.; Dosio, F.; Stella, B.; Giordani, S. Effects of the molecular weight of hyaluronic acid in a carbon nanotube drug delivery conjugate. Front Chem., 2020, 8(1164), 578008. doi: 10.3389/fchem.2020.578008 PMID: 33381490
  86. Zhao, L.P.; Yang, G.; Zhang, X.M.; Qu, F. Development of aptamer screening against proteins and its applications. Chin. J. Anal. Chem., 2020, 48(5), 560-572. doi: 10.1016/S1872-2040(20)60012-3
  87. Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem., 2017, 1(10), 0076. doi: 10.1038/s41570-017-0076
  88. Vahed, Z.S.; Fathi, N.; Samiei, M.; Dizaj, M.S.; Sharifi, S. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J. Drug Target., 2019, 27(3), 292-299. doi: 10.1080/1061186X.2018.1491978 PMID: 29929413
  89. Gu, F.; Hu, C.; Xia, Q.; Gong, C.; Gao, S.; Chen, Z. Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J. Nanopart. Res., 2018, 20(11), 303. doi: 10.1007/s11051-018-4407-z PMID: 30524190
  90. Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60. doi: 10.1016/j.ijpharm.2015.02.031 PMID: 25712164
  91. Taghavi, S. HashemNia, A.; Mosaffa, F.; Askarian, S.; Abnous, K.; Ramezani, M. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 140, 28-39. doi: 10.1016/j.colsurfb.2015.12.021 PMID: 26731195
  92. Dutt, T.S.; Saxena, R.K. Uptake of carboxylated fluorescent nano-diamonds by resting and activated T and B lymphocytes and comparison with carbon nanotube uptake. Int. J. Nano. Med. Eng., 2019, 4(7), 61-68.
  93. Suo, X.; Eldridge, B.N.; Zhang, H.; Mao, C.; Min, Y.; Sun, Y.; Singh, R.; Ming, X. P-Glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33464-33473. doi: 10.1021/acsami.8b11974 PMID: 30188117
  94. Kohshour, O.M.; Mirzaie, S.; Zeinali, M.; Amin, M.; Said Hakhamaneshi, M.; Jalaili, A.; Mosaveri, N.; Jamalan, M. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate. Chem. Biol. Drug Des., 2014, 83(3), 259-265. doi: 10.1111/cbdd.12244 PMID: 24118702
  95. Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397. doi: 10.3390/polym12061397
  96. Bafkary, R.; Khoee, S. Carbon nanotube-based stimuli-responsive nanocarriers for drug delivery. RSC Advances, 2016, 6(86), 82553-82565. doi: 10.1039/C6RA12463A
  97. Wei, X.; Wang, L.; Sun, W.; Zhang, M.; Ma, H.; Zhang, Y.; Zhang, X.; Li, S. C-type lectin B (SpCTL-B) regulates the expression of antimicrobial peptides and promotes phagocytosis in mud crab Scylla paramamosain. Dev. Comp. Immunol., 2018, 84, 213-229. doi: 10.1016/j.dci.2018.02.016 PMID: 29476770
  98. Boncel, S.; Müller, K.H.; Skepper, J.N.; Walczak, K.Z.; Koziol, K.K.K. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials, 2011, 32(30), 7677-7686. doi: 10.1016/j.biomaterials.2011.06.055 PMID: 21764122
  99. Joshi, M.; Kumar, P.; Kumar, R.; Sharma, G.; Singh, B.; Katare, O.P.; Raza, K. Aminated carbon-based "cargo vehicles" for improved delivery of methotrexate to breast cancer cells. Mater. Sci. Eng. C, 2017, 75, 1376-1388. doi: 10.1016/j.msec.2017.03.057 PMID: 28415429
  100. Narei, H.; Ghasempour, R.; Akhavan, O. Toxicity and Safety Issues of Carbon Nanotubes.In: Carbon nanotube-reinforced polymers; Elsevier Science B.V: Amsterdam, 2018.
  101. Poulsen, S.S.; Jackson, P.; Kling, K.; Knudsen, K.B.; Skaug, V.; Kyjovska, Z.O.; Thomsen, B.L.; Clausen, P.A.; Atluri, R.; Berthing, T.; Bengtson, S.; Wolff, H.; Jensen, K.A.; Wallin, H.; Vogel, U. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology, 2016, 10(9), 1263-1275. doi: 10.1080/17435390.2016.1202351 PMID: 27323647
  102. Taylor-Just, A.J.; Ihrie, M.D.; Duke, K.S.; Lee, H.Y.; You, D.J.; Hussain, S.; Kodali, V.K.; Ziemann, C.; Creutzenberg, O.; Vulpoi, A.; Turcu, F.; Potara, M.; Todea, M.; van den Brule, S.; Lison, D.; Bonner, J.C. The pulmonary toxicity of carboxylated or aminated multi-walled carbon nanotubes in mice is determined by the prior purification method. Part. Fibre Toxicol., 2020, 17(1), 60. doi: 10.1186/s12989-020-00390-y PMID: 31900181
  103. Zhou, L.; Forman, H.J.; Ge, Y.; Lunec, J. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicol. In Vitro, 2017, 42, 292-298. doi: 10.1016/j.tiv.2017.04.027 PMID: 28483489
  104. Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharm. Anal., 2019, 9(5), 293-300. doi: 10.1016/j.jpha.2019.04.003 PMID: 31929938
  105. Wang, L.; Zhang, M.; Zhang, N.; Shi, J.; Zhang, H.; Zhang, Z.; Wang, L. Li, Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int. J. Nanomedicine, 2011, 6, 2641-2652. doi: 10.2147/IJN.S24167 PMID: 22114495
  106. Ghosh, S.; Dutta, S.; Sarkar, A.; Kundu, M.; Sil, P.C. Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf. B Biointerfaces, 2021, 197, 111404. doi: 10.1016/j.colsurfb.2020.111404 PMID: 33142257
  107. Zhang, X.L.X. Preparation method of carbon nanotube-chitosanphycocyanin nanoparticles. Patent 02274510A, 2012.
  108. Chen, J.; Liu, H. Polymer and method for using the polymer for solubilizing nanotubes. Patent US20077244407 2007.
  109. Ford, W.E.; Wessels, J.; Yasuda, A. Method and apparatus for producing carbon nanotubes. Patent US20060014375, 2006.
  110. Naumov, A.V. System and method for antibiotic delivery using single-walled carbon nanotubes. Patent 16366007, 2021.
  111. Scheinberg, D.A.; McDevitt, M.R.; Villa, C.H.; Mulvey, J.J. Targeted self-assembly of functionalized carbon nanotubes on tumors. Patent US9976137B2, 2021.
  112. Hongjuan, Y.; Yingge, Z.; Yan, L. A drug delivery system comprising a cancer stem cell-targeted carbon nanotube, preparation and use thereof. Canadian Patent Application, CA2957805A1, 2016.
  113. Altadena, M.G.; Aria, A. Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface. United States Patent Application Publication, US20150238742A1, 2015.
  114. Chen, W.R. Immunologically modified carbon nanotubes for cancer treatment. United States Patent, US8664198B2, 2014.
  115. Mohapatra, S.S.; Kumar, A. Method of drug delivery by carbon nanotube-chitosan nanocomplexes. United States Patent, US8536324B2, 2013.
  116. Harrison, R.J., Jr; Resasco, D.E.; Neves, L.F.F. Compositions and methods for cancer treatment using targeted carbon nanotubes. United States Patent, US8518870B2, 2013.
  117. Kang, D.W.N.T.H. Carbon nanotube polymer composite coating film which suppresses toxicity and inflammation and has improved biocompatibility and adjusted surface strength. Patent WO2012060592A3, 2013.
  118. Dongwoo, K.T.N., Jr; Lee, S.K.S. Method for preparing a highly dispersive carbon nanotube for reducing in vivo immunotoxicity. Patent WO2012057511A2, 2012.
  119. Dai, H.; Sunnyvale, C.A.; Chen, R.J. Non-covalent sidewall functionalization of carbon nanotubes. United State Patent, US8029734B2, 2011.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023