STAT3 Signaling Axis and Tamoxifen in Breast Cancer: A Promising Target for Treatment Resistance

  • Авторы: Zamanian M.Y.1, Golmohammadi M.2, Alalak A.3, Kamiab Z.4, Obaid R.5, Ramírez-Coronel A.6, Hjazi A.7, Abosaooda M.8, Mustafa Y.9, Heidari M.10, Verma A.11, Nazari Y.12, Bazmandegan G.13
  • Учреждения:
    1. Department of Physiology, School of Medicine, Hamadan University of Medical Sciences
    2. Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences
    3. College of Pharmacy, Al-Bayan University
    4. Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences
    5. Department of Biomedical Engineering, Al-Mustaqbal University College
    6. Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, University of Cuenca
    7. Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University
    8. College of Pharmacy, the Islamic University
    9. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul
    10. Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran
    11. Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Sam Higginbottom University of Agriculture, Technology and Sciences
    12. , Saveh University of Medical Sciences
    13. Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences
  • Выпуск: Том 23, № 16 (2023)
  • Страницы: 1819-1828
  • Раздел: Oncology
  • URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694355
  • DOI: https://doi.org/10.2174/1871520623666230713101119
  • ID: 694355

Цитировать

Полный текст

Аннотация

Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.

Ключевые слова

Об авторах

Mohammad Zamanian

Department of Physiology, School of Medicine, Hamadan University of Medical Sciences

Email: info@benthamscience.net

Maryam Golmohammadi

Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Ali Alalak

College of Pharmacy, Al-Bayan University

Email: info@benthamscience.net

Zahra Kamiab

Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences

Email: info@benthamscience.net

Rasha Obaid

Department of Biomedical Engineering, Al-Mustaqbal University College

Email: info@benthamscience.net

Andrés Ramírez-Coronel

Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, University of Cuenca

Email: info@benthamscience.net

Ahmed Hjazi

Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University

Email: info@benthamscience.net

Munther Abosaooda

College of Pharmacy, the Islamic University

Email: info@benthamscience.net

Yasser Mustafa

Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul

Email: info@benthamscience.net

Mahsa Heidari

Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran

Email: info@benthamscience.net

Amita Verma

Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Sam Higginbottom University of Agriculture, Technology and Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Yashar Nazari

, Saveh University of Medical Sciences

Email: info@benthamscience.net

Gholamreza Bazmandegan

Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Marina, D.; Åse, K.R.; Buch-Larsen, K.; Linn, G.; Michael, A.; Peter, S. Influence of the anti‐oestrogens tamoxifen and letrozole on thyroid function in women with early and advanced breast cancer: A systematic review. Cancer Med., 2022, 12(2), 967-982. PMID: 35748065
  3. Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791. doi: 10.1097/CM9.0000000000001474 PMID: 33734139
  4. Shaath, H.; Elango, R.; Alajez, N.M. Molecular classification of breast cancer utilizing long non-coding RNA (lncRNA) transcriptomes identifies novel diagnostic lncRNA panel for triple-negative breast cancer. Cancers, 2021, 13(21), 5350. doi: 10.3390/cancers13215350 PMID: 34771513
  5. Li, M.; Tingting, Y.; Miaozhou, W.; Yanqiu, C.; Yingyuan, W. Advances in single-cell sequencing technology and its applications in triple-negative. Breast Cancer, 2021, 14, 465-474. PMID: 36540278
  6. Niraula, S.; Ocana, A.; Ennis, M.; Goodwin, P.J. Body size and breast cancer prognosis in relation to hormone receptor and menopausal status: A meta-analysis. Breast Cancer Res. Treat., 2012, 134(2), 769-781. doi: 10.1007/s10549-012-2073-x PMID: 22562122
  7. Veronesi, U.; Boyle, P.; Goldhirsch, A. Orecchia, R.; Viale, G. Breas t cancer. Lancet, 2005, 365(9472), 1727-1741. doi: 10.1016/S0140-6736(05)66546-4 PMID: 15894099
  8. Group, E.B.C.T.C. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005, 365(9472), 1687-1717. doi: 10.1016/S0140-6736(05)66544-0 PMID: 15894097
  9. Montagna, E.; Zagami, P.; Masiero, M.; Mazzocco, K.; Pravettoni, G.; Munzone, E. Assessing predictors of tamoxifen nonadherence in patients with early breast cancer. Patient Prefer. Adherence, 2021, 15, 2051-2061. doi: 10.2147/PPA.S285768 PMID: 34552323
  10. Francis, P.A.; Pagani, O.; Fleming, G.F.; Walley, B.A.; Colleoni, M.; Láng, I.; Gómez, H.L.; Tondini, C.; Ciruelos, E.; Burstein, H.J.; Bonnefoi, H.R.; Bellet, M.; Martino, S.; Geyer, C.E., Jr; Goetz, M.P.; Stearns, V.; Pinotti, G.; Puglisi, F.; Spazzapan, S.; Climent, M.A.; Pavesi, L.; Ruhstaller, T.; Davidson, N.E.; Coleman, R.; Debled, M.; Buchholz, S.; Ingle, J.N.; Winer, E.P.; Maibach, R.; Rabaglio-Poretti, M.; Ruepp, B.; Di Leo, A.; Coates, A.S.; Gelber, R.D.; Goldhirsch, A.; Regan, M.M. Tailoring adjuvant endocrine therapy for premenopausal breast cancer. N. Engl. J. Med., 2018, 379(2), 122-137. doi: 10.1056/NEJMoa1803164 PMID: 29863451
  11. Burstein, H.J.; Lacchetti, C.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.E.; Giordano, S.H.; Hudis, C.A.; Solky, A.J.; Stearns, V.; Winer, E.P.; Griggs, J.J. Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: American Society of Clinical Oncology clinical practice guideline update on ovarian suppression. J. Clin. Oncol., 2016, 34(14), 1689-1701. doi: 10.1200/JCO.2015.65.9573 PMID: 26884586
  12. Traboulsi, T.; El Ezzy, M.; Gleason, J.L.; Mader, S. Antiestrogens: Structure-activity relationships and use in breast cancer treatment. J. Mol. Endocrinol., 2017, 58(1), R15-R31. doi: 10.1530/JME-16-0024 PMID: 27729460
  13. Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24. doi: 10.1016/j.pharmthera.2017.12.012 PMID: 29289555
  14. Tsoi, H.; You, C.P.; Leung, M.H.; Man, E.P.S.; Khoo, U.S. Targeting ribosome biogenesis to combat tamoxifen resistance in ER+ve breast cancer. Cancers, 2022, 14(5), 1251. doi: 10.3390/cancers14051251 PMID: 35267559
  15. Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; Hayes, D.F. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med., 2017, 377(19), 1836-1846. doi: 10.1056/NEJMoa1701830 PMID: 29117498
  16. Ali, S.; Rasool, M.; Chaoudhry, H.; Pushparaj, P.N.; Jha, P.; Hafiz, A.; Mahfooz, M.; Sami, G.A.; Kamal, M.A.; Bashir, S.; Ali, A.; Jamal, M.S. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation, 2016, 12(3), 135-139. doi: 10.6026/97320630012135 PMID: 28149048
  17. Sanyakamdhorn, S.; Agudelo, D.; Bekale, L.; Tajmir-Riahi, H.A. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers. Colloids Surf. B Biointerfaces, 2016, 145, 55-63. doi: 10.1016/j.colsurfb.2016.04.035 PMID: 27137803
  18. Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H.C.; Taylor, C.; Wang, Y.C.; Dowsett, M.; Ingle, J.; Peto, R. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet, 2011, 378(9793), 771-784. doi: 10.1016/S0140-6736(11)60993-8 PMID: 21802721
  19. Helland, T.; Alsomairy, S.; Lin, C.; Søiland, H.; Mellgren, G.; Hertz, D.L. Generating a precision endoxifen prediction algorithm to advance personalized tamoxifen treatment in patients with breast cancer. J. Pers. Med., 2021, 11(3), 201. doi: 10.3390/jpm11030201 PMID: 33805613
  20. Yu, D.; Qi, S.; Guan, X.; Yu, W.; Yu, X.; Cai, M.; Li, Q.; Wang, W.; Zhang, W.; Qin, J.J. Inhibition of STAT3 signaling pathway by terphenyllin suppresses growth and metastasis of gastric cancer. Front. Pharmacol., 2022, 13, 870367. doi: 10.3389/fphar.2022.870367 PMID: 35401187
  21. Mou, J.; Huang, M.; Wang, F.; Xu, X.; Xie, H.; Lu, H.; Li, M.; Li, Y.; Kong, W.; Chen, J.; Xiao, Y.; Chen, Y.; Wang, C.; Ren, J. HMGN5 escorts oncogenic STAT3 signaling by regulating the chromatin landscape in breast cancer tumorigenesis. Mol. Cancer Res., 2022, 20(12), 1724-1738. doi: 10.1158/1541-7786.MCR-22-0241 PMID: 36066963
  22. Li, Y.; Wang, H.; Liu, W.; Hou, J.; Xu, J.; Guo, Y.; Hu, P. Cratoxylumxanthone C, a natural xanthone, inhibits lung cancer proliferation and metastasis by regulating STAT3 and FAK signal pathways. Front. Pharmacol., 2022, 13, 920422. doi: 10.3389/fphar.2022.920422 PMID: 36016565
  23. He, S.L.; Zhao, X.; Yi, S.J. CircAHNAK upregulates EIF2B5 expression to inhibit the progression of ovarian cancer by modulating the JAK2/STAT3 signaling pathway. Carcinogenesis, 2022, 43(10), 941-955. doi: 10.1093/carcin/bgac053 PMID: 35710311
  24. Yan, R.; Lin, F.; Hu, C.; Tong, S. Association between STAT3 polymorphisms and cancer risk: A meta-analysis. Mol. Genet. Genomics, 2015, 290(6), 2261-2270. doi: 10.1007/s00438-015-1074-y PMID: 26063618
  25. Yuan, K.; Ye, J.; Liu, Z.; Ren, Y.; He, W.; Xu, J.; He, Y.; Yuan, Y. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression. J. Exp. Clin. Cancer Res., 2020, 39(1), 9. doi: 10.1186/s13046-019-1514-3 PMID: 31928530
  26. Wingelhofer, B.; Neubauer, H.A.; Valent, P.; Han, X.; Constantinescu, S.N.; Gunning, P.T.; Müller, M.; Moriggl, R. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia, 2018, 32(8), 1713-1726. doi: 10.1038/s41375-018-0117-x PMID: 29728695
  27. Jaśkiewicz, A.; Domoradzki, T.; Pająk, B. Targeting the JAK2/STAT3 pathway—Can we compare it to the two faces of the God Janus? Int. J. Mol. Sci., 2020, 21(21), 8261. doi: 10.3390/ijms21218261 PMID: 33158194
  28. Gu, Y.; Mohammad, I.; Liu, Z. Overview of the STAT 3 signaling pathway in cancer and the development of specific inhibitors. Oncol. Lett., 2020, 19(4), 2585-2594. doi: 10.3892/ol.2020.11394 PMID: 32218808
  29. Johnson, D.E.; O'Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248. doi: 10.1038/nrclinonc.2018.8 PMID: 29405201
  30. Liang, Y.; Kong, D.; Zhang, Y.; Li, S.; Li, Y.; Ramamoorthy, A.; Ma, J. Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC 1 cancer cells. Biotechnol. Bioprocess Eng.; BBE, 2020, 25(2), 197-205. doi: 10.1007/s12257-019-0326-9
  31. Tsoi, H.; Man, E.P.S.; Chau, K.M.; Khoo, U.S. Targeting the IL-6/STAT3 signalling cascade to reverse tamoxifen resistance in estrogen receptor positive breast cancer. Cancers, 2021, 13(7), 1511. doi: 10.3390/cancers13071511 PMID: 33806019
  32. Liu, W.H.; Chen, M.T.; Wang, M.L.; Lee, Y.Y.; Chiou, G.Y.; Chien, C.S.; Huang, P.I.; Chen, Y.W.; Huang, M.C.; Chiou, S.H.; Shih, Y.H.; Ma, H.I. Cisplatin-selected resistance is associated with increased motility and stem-like properties via activation of STAT3/Snail axis in atypical teratoid/rhabdoid tumor cells. Oncotarget, 2015, 6(3), 1750-1768. doi: 10.18632/oncotarget.2737 PMID: 25638155
  33. Jubair, S.; Alkhateeb, A.; Tabl, A.A.; Rueda, L.; Ngom, A. A novel approach to identify subtype-specific network biomarkers of breast cancer survivability. Netw. Model. Anal. Health Inform. Bioinform., 2020, 9(1), 43. doi: 10.1007/s13721-020-00249-4
  34. Bui, Q.T. Im, J.H.; Jeong, S.B.; Kim, Y.M.; Lim, S.C.; Kim, B.; Kang, K.W. Essential role of Notch4/STAT3 signaling in epithelial–mesenchymal transition of tamoxifen-resistant human breast cancer. Cancer Lett., 2017, 390, 115-125. doi: 10.1016/j.canlet.2017.01.014 PMID: 28108315
  35. Zhu, N.; Zhang, J.; Du, Y.; Qin, X.; Miao, R.; Nan, J.; Chen, X.; Sun, J.; Zhao, R.; Zhang, X.; Shi, L.; Li, X.; Lin, Y.; Wei, W.; Mao, A.; Zhang, Z.; Stark, G.R.; Wang, Y.; Yang, J. Loss of ZIP facilitates JAK2-STAT3 activation in tamoxifen-resistant breast cancer. Proc. Natl. Acad. Sci., 2020, 117(26), 15047-15054. doi: 10.1073/pnas.1910278117 PMID: 32532922
  36. Ishii, Y.; Waxman, S.; Germain, D. Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res., 2008, 68(3), 852-860. doi: 10.1158/0008-5472.CAN-07-2879 PMID: 18245487
  37. Yi, E.H.; Lee, C.S.; Lee, J.K.; Lee, Y.J.; Shin, M.K.; Cho, C.H.; Kang, K.W.; Lee, J.W.; Han, W.; Noh, D.Y.; Kim, Y.N.; Cho, I.H.; Ye, S. STAT3-RANTES autocrine signaling is essential for tamoxifen resistance in human breast cancer cells. Mol. Cancer Res., 2013, 11(1), 31-42. doi: 10.1158/1541-7786.MCR-12-0217 PMID: 23074171
  38. Wang, X.; Wang, G.; Zhao, Y.; Liu, X.; Ding, Q.; Shi, J.; Ding, Y.; Wang, S. STAT3 mediates resistance of CD44+CD24-/low breast cancer stem cells to tamoxifen in vitro. J. Biomed. Res., 2012, 26(5), 325-335. doi: 10.7555/JBR.26.20110050 PMID: 23554768
  39. Simões, B.M.; Santiago-Gómez, A.; Chiodo, C.; Moreira, T.; Conole, D.; Lovell, S.; Alferez, D.; Eyre, R.; Spence, K.; Sarmiento-Castro, A.; Kohler, B.; Morisset, L.; Lanzino, M.; Andò, S.; Marangoni, E.; Sims, A.H.; Tate, E.W.; Howell, S.J.; Clarke, R.B. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene, 2020, 39(25), 4896-4908. doi: 10.1038/s41388-020-1335-z PMID: 32472077
  40. Kilker, R.L.; Planas-Silva, M.D. Cyclin D1 is necessary for tamoxifen-induced cell cycle progression in human breast cancer cells. Cancer Res., 2006, 66(23), 11478-11484. doi: 10.1158/0008-5472.CAN-06-1755 PMID: 17145896
  41. Shi, Q.; Li, Y.; Li, S.; Jin, L.; Lai, H.; Wu, Y.; Cai, Z.; Zhu, M.; Li, Q.; Li, Y.; Wang, J.; Liu, Y.; Wu, Z.; Song, E.; Liu, Q. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat. Commun., 2020, 11(1), 5513. doi: 10.1038/s41467-020-19349-w PMID: 33139730
  42. Jirström, K.; Stendahl, M.; Rydén, L.; Kronblad, Å.; Bendahl, P.O.; Stål, O.; Landberg, G. Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res., 2005, 65(17), 8009-8016. doi: 10.1158/0008-5472.CAN-05-0746 PMID: 16140974
  43. Stendahl, M.; Kronblad, Å.; Rydén, L.; Emdin, S.; Bengtsson, N.O.; Landberg, G. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br. J. Cancer, 2004, 90(10), 1942-1948. doi: 10.1038/sj.bjc.6601831 PMID: 15138475
  44. Parakh, S.; Ernst, M.; Poh, A.R. Multicellular effects of STAT3 in non-small cell lung cancer: Mechanistic insights and therapeutic opportunities. Cancers, 2021, 13(24), 6228. doi: 10.3390/cancers13246228 PMID: 34944848
  45. Santoni, M.; Miccini, F.; Cimadamore, A.; Piva, F.; Massari, F.; Cheng, L.; Lopez-Beltran, A.; Montironi, R.; Battelli, N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin. Investig. Drugs, 2021, 30(3), 245-251. doi: 10.1080/13543784.2021.1891222 PMID: 33599169
  46. Chalikonda, G.; Lee, H.; Sheik, A.; Huh, Y.S. Targeting key transcriptional factor STAT3 in colorectal cancer. Mol. Cell. Biochem., 2021, 476(9), 3219-3228. doi: 10.1007/s11010-021-04156-8 PMID: 33866491
  47. Galoczova, M.; Coates, P.; Vojtesek, B. STAT3, stem cells, cancer stem cells and p63. Cell. Mol. Biol. Lett., 2018, 23(1), 12. doi: 10.1186/s11658-018-0078-0 PMID: 29588647
  48. Decker, T.; Kovarik, P.; Meinke, A. GAS elements: A few nucleotides with a major impact on cytokine-induced gene expression. J. Interferon Cytokine Res., 1997, 17(3), 121-134. doi: 10.1089/jir.1997.17.121 PMID: 9085936
  49. Andrés, R.M.; Hald, A.; Johansen, C.; Kragballe, K.; Iversen, L. Studies of Jak/STAT3 expression and signalling in psoriasis identifies STAT3-Ser727 phosphorylation as a modulator of transcriptional activity. Exp. Dermatol., 2013, 22(5), 323-328. doi: 10.1111/exd.12128 PMID: 23614738
  50. Huang, Q.; Zhong, Y.; Dong, H.; Zheng, Q.; Shi, S.; Zhu, K.; Qu, X.; Hu, W.; Zhang, X.; Wang, Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur. J. Med. Chem., 2020, 187, 111922. doi: 10.1016/j.ejmech.2019.111922 PMID: 31810784
  51. Yuan, Z.; Guan, Y.; Chatterjee, D.; Chin, Y.E. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science, 2005, 307(5707), 269-273. doi: 10.1126/science.1105166 PMID: 15653507
  52. Park, I.H.; Li, C. Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation. J. Mol. Recognit., 2011, 24(2), 254-265. doi: 10.1002/jmr.1047 PMID: 21360612
  53. Li, L.X.; Zhou, J.X.; Calvet, J.P.; Godwin, A.K.; Jensen, R.A.; Li, X. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis., 2018, 9(3), 326. doi: 10.1038/s41419-018-0347-x PMID: 29487338
  54. McDaniel, J.M.; Varley, K.E.; Gertz, J.; Savic, D.S.; Roberts, B.S.; Bailey, S.K.; Shevde, L.A.; Ramaker, R.C.; Lasseigne, B.N.; Kirby, M.K.; Newberry, K.M.; Partridge, E.C.; Jones, A.L.; Boone, B.; Levy, S.E.; Oliver, P.G.; Sexton, K.C.; Grizzle, W.E.; Forero, A.; Buchsbaum, D.J.; Cooper, S.J.; Myers, R.M. Genomic regulation of invasion by STAT3 in triple negative breast cancer. Oncotarget, 2017, 8(5), 8226-8238. doi: 10.18632/oncotarget.14153 PMID: 28030809
  55. Moreira, M.P.; da Conceição Braga, L.; Cassali, G.D.; Silva, L.M. STAT3 as a promising chemoresistance biomarker associated with the CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp. Cell Res., 2018, 363(2), 283-290. doi: 10.1016/j.yexcr.2018.01.018 PMID: 29352988
  56. Sasidharan Nair, V.; Toor, S.M.; Ali, B.R.; Elkord, E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin. Ther. Targets, 2018, 22(6), 547-557. doi: 10.1080/14728222.2018.1471137 PMID: 29702007
  57. Demaria, M.; Giorgi, C.; Lebiedzinska, M.; Esposito, G.; D'Angeli, L.; Bartoli, A.; Gough, D.J.; Turkson, J.; Levy, D.E.; Watson, C.J.; Wieckowski, M.R.; Provero, P.; Pinton, P.; Poli, V.A. STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2(11), 823-842. doi: 10.18632/aging.100232 PMID: 21084727
  58. Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Abdel-Aziz, M. STAT3 transcription factor as target for anti-cancer therapy. Pharmacol. Rep., 2020, 72(5), 1101-1124. doi: 10.1007/s43440-020-00156-5 PMID: 32880101
  59. Farkhondeh, T.; Samarghandian, S. Antidotal effects of curcumin against agents-induced cardiovascular toxicity. Cardiovasc. Hematol. Disord. Drug Targets, 2016, 16(1), 30-37. doi: 10.2174/1871529X16666160802144510 PMID: 27492624
  60. Ma, M.; Huang, W.; Kong, D. IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int. Immunopharmacol., 2018, 59, 148-156. doi: 10.1016/j.intimp.2018.04.013 PMID: 29655056
  61. Hao, S.; Chen, X.; Wang, F.; Shao, Q.; Liu, J.; Zhao, H.; Yuan, C.; Ren, H.; Mao, H. Breast cancer cell–derived IL-35 promotes tumor progression via induction of IL-35-producing induced regulatory T cells. Carcinogenesis, 2018, 39(12), 1488-1496. doi: 10.1093/carcin/bgy136 PMID: 30321288
  62. Xie, Q.; Yang, Z.; Huang, X.; Zhang, Z.; Li, J.; Ju, J.; Zhang, H.; Ma, J. Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J. Hematol. Oncol., 2019, 12(1), 60. doi: 10.1186/s13045-019-0744-3 PMID: 31186039
  63. Tawara, K.; Scott, H.; Emathinger, J.; Wolf, C.; LaJoie, D.; Hedeen, D.; Bond, L.; Montgomery, P.; Jorcyk, C. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget, 2019, 10(21), 2068-2085. doi: 10.18632/oncotarget.26699 PMID: 31007849
  64. Tawara, K.; Scott, H.; Emathinger, J.; Ide, A.; Fox, R.; Greiner, D.; LaJoie, D.; Hedeen, D.; Nandakumar, M.; Oler, A.J.; Holzer, R.; Jorcyk, C. Co-Expression of VEGF and IL-6 family cytokines is associated with decreased survival in HER2 negative breast cancer patients: Subtype-specific IL-6 family cytokine-mediated VEGF secretion. Transl. Oncol., 2019, 12(2), 245-255. doi: 10.1016/j.tranon.2018.10.004 PMID: 30439625
  65. Chun, J.; Song, K.; Kim, Y.S. Sesquiterpene lactones-enriched fraction of Inula helenium L. induces apoptosis through inhibition of signal transducers and activators of transcription 3 signaling pathway in MDA-MB-231 breast cancer cells. Phytother. Res., 2018, 32(12), 2501-2509. doi: 10.1002/ptr.6189 PMID: 30251272
  66. Monteleone, E.; Orecchia, V.; Corrieri, P.; Schiavone, D.; Avalle, L.; Moiso, E.; Savino, A.; Molineris, I.; Provero, P.; Poli, V. SP1 and STAT3 functionally synergize to induce the RhoU Small GTPase and a subclass of non-canonical WNT responsive genes correlating with poor prognosis in breast cancer. Cancers, 2019, 11(1), 101. doi: 10.3390/cancers11010101 PMID: 30654518
  67. Hedrick, E.; Cheng, Y.; Jin, U.H.; Kim, K.; Safe, S. Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget, 2016, 7(16), 22245-22256. doi: 10.18632/oncotarget.7925 PMID: 26967243
  68. Siersbæk, R.; Kumar, S.; Carroll, J.S. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev., 2018, 32(17-18), 1141-1154. doi: 10.1101/gad.316646.118 PMID: 30181360
  69. Hu, R.; Hilakivi-Clarke, L.; Clarke, R. Molecular mechanisms of tamoxifen-associated endometrial cancer. Oncol. Lett., 2015, 9(4), 1495-1501. doi: 10.3892/ol.2015.2962 PMID: 25788989
  70. Matutino, A.; Joy, A.A.; Brezden-Masley, C.; Chia, S.; Verma, S. Hormone receptor-positive, HER2-negative metastatic breast cancer: redrawing the lines. Curr. Oncol., 2018, 25(11), 131-141. doi: 10.3747/co.25.4000 PMID: 29910656
  71. Clarke, R.; Thompson, E.W.; Leonessa, F.; Lippman, J.; McGarvey, M.; Frandsen, T.L.; Brünner, N. Hormone resistance, invasiveness, and metastatic potential in breast cancer. Breast Cancer Res. Treat., 1993, 24(3), 227-239. doi: 10.1007/BF01833263 PMID: 8435478
  72. Kim, M.R.; Choi, H.K.; Cho, K.B.; Kim, H.S.; Kang, K.W. Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Cancer Sci., 2009, 100(10), 1834-1841. doi: 10.1111/j.1349-7006.2009.01260.x PMID: 19681904
  73. Moon, S.Y.; Lee, H.; Kim, S.; Hong, J.H.; Chun, S.H.; Lee, H.Y.; Kang, K.; Kim, H.S.; Won, H.S.; Ko, Y.H. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer, 2021, 21(1), 931. doi: 10.1186/s12885-021-08641-7 PMID: 34407787
  74. Beebe, J.D.; Liu, J.Y.; Zhang, J.T. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol. Ther., 2018, 191, 74-91. doi: 10.1016/j.pharmthera.2018.06.006 PMID: 29933035
  75. Madsen, M.W.; Reiter, B.E.; Lykkesfeldt, A.E. Differential expression of estrogen receptor mRNA splice variants in the tamoxifen resistant human breast cancer cell line, MCF-7/TAMR-1 compared to the parental MCF-7 cell line. Mol. Cell. Endocrinol., 1995, 109(2), 197-207. doi: 10.1016/0303-7207(95)03503-Y PMID: 7664983
  76. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550. doi: 10.1073/pnas.0506580102 PMID: 16199517
  77. Ray, P.; Dutta, D.; Haque, I.; Nair, G.; Mohammed, J.; Parmer, M.; Kale, N.; Orr, M.; Jain, P.; Banerjee, S.; Reindl, K.M.; Mallik, S.; Kambhampati, S.; Banerjee, S.K.; Quadir, M. pH-sensitive Nanodrug carriers for Codelivery of ERK inhibitor and gemcitabine enhance the inhibition of tumor growth in pancreatic Cancer. Mol. Pharm., 2021, 18(1), 87-100. doi: 10.1021/acs.molpharmaceut.0c00499 PMID: 33231464
  78. Buettner, R.; Mora, L.B.; Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res., 2002, 8(4), 945-954. PMID: 11948098
  79. Aggarwal, B.B.; Sethi, G.; Ahn, K.S.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann. N. Y. Acad. Sci., 2006, 1091(1), 151-169. doi: 10.1196/annals.1378.063 PMID: 17341611
  80. Fletcher, S.; Turkson, J.; Gunning, P.T. Molecular approaches towards the inhibition of the signal transducer and activator of transcription 3 (Stat3) protein. ChemMedChem, 2008, 3(8), 1159-1168. doi: 10.1002/cmdc.200800123 PMID: 18683176
  81. Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of Disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol., 2005, 2(6), 315-324. doi: 10.1038/ncponc0195 PMID: 16264989
  82. Yang, J.; Liao, X.; Agarwal, M.K.; Barnes, L.; Auron, P.E.; Stark, G.R. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκ. B. Genes Dev., 2007, 21(11), 1396-1408. doi: 10.1101/gad.1553707 PMID: 17510282
  83. Yang, J.; Huang, J.; Dasgupta, M.; Sears, N.; Miyagi, M.; Wang, B.; Chance, M.R.; Chen, X.; Du, Y.; Wang, Y.; An, L.; Wang, Q.; Lu, T.; Zhang, X.; Wang, Z.; Stark, G.R. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci., 2010, 107(50), 21499-21504. doi: 10.1073/pnas.1016147107 PMID: 21098664
  84. Lee, H.; Zhang, P.; Herrmann, A.; Yang, C.; Xin, H.; Wang, Z.; Hoon, D.S.B.; Forman, S.J.; Jove, R.; Riggs, A.D.; Yu, H. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc. Natl. Acad. Sci., 2012, 109(20), 7765-7769. doi: 10.1073/pnas.1205132109 PMID: 22547799
  85. Li, L.; Shaw, P.E. Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J. Biol. Chem., 2002, 277(20), 17397-17405. doi: 10.1074/jbc.M109962200 PMID: 11859072
  86. Leung, E.; Kannan, N.; Krissansen, G.W.; Findlay, M.P.; Baguley, B.C. MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol. Ther., 2010, 9(9), 717-724. doi: 10.4161/cbt.9.9.11432 PMID: 20234184
  87. Alvarez, J.V.; Frank, D.A. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol. Ther., 2004, 3(11), 1045-1050. doi: 10.4161/cbt.3.11.1172 PMID: 15539936
  88. Ray, P.; Nair, G.; Ghosh, A.; Banerjee, S.; Golovko, M.Y.; Banerjee, S.K.; Reindl, K.M.; Mallik, S.; Quadir, M. Microenvironment-sensing, nanocarrier-mediated delivery of combination chemotherapy for pancreatic cancer. J. Cell Commun. Signal., 2019, 13(3), 407-420. doi: 10.1007/s12079-019-00514-w PMID: 30915617
  89. Massarweh, S.; Osborne, C.K.; Creighton, C.J.; Qin, L.; Tsimelzon, A.; Huang, S.; Weiss, H.; Rimawi, M.; Schiff, R. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res., 2008, 68(3), 826-833. doi: 10.1158/0008-5472.CAN-07-2707 PMID: 18245484
  90. Moerkens, M.; Zhang, Y.; Wester, L.; van de Water, B.; Meerman, J.H.N. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation. BMC Cancer, 2014, 14(1), 283. doi: 10.1186/1471-2407-14-283 PMID: 24758408
  91. Yuan, Y.; He, X.; Li, X.; Liu, Y.; Tang, Y.; Deng, H.; Shi, X. Narciclasine induces autophagy-mediated apoptosis in gastric cancer cells through the Akt/mTOR signaling pathway. BMC Pharmacol. Toxicol., 2021, 22(1), 70. doi: 10.1186/s40360-021-00537-3 PMID: 34753517
  92. Bräutigam, J.; Bischoff, I.; Schürmann, C.; Buchmann, G.; Epah, J.; Fuchs, S.; Heiss, E.; Brandes, R.P.; Fürst, R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J. Mol. Cell. Cardiol., 2019, 135, 97-108. doi: 10.1016/j.yjmcc.2019.08.001 PMID: 31381906
  93. Lv, C.; Huang, Y.; Huang, R.; Wang, Q.; Zhang, H.; Jin, J.; Lu, D.; Zhou, Y.; Shen, Y.; Zhang, W.; Luan, X.; Liu, S. Narciclasine targets STAT3 via distinct mechanisms in tamoxifen-resistant breast cancer cells. Mol. Ther. Oncolytics, 2022, 24, 340-354. doi: 10.1016/j.omto.2021.12.025 PMID: 35118192
  94. Sato, K. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int. J. Mol. Sci., 2013, 14(6), 10761-10790. doi: 10.3390/ijms140610761 PMID: 23702846
  95. Silva, C.M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene, 2004, 23(48), 8017-8023. doi: 10.1038/sj.onc.1208159 PMID: 15489919
  96. Silva, C.M.; Shupnik, M.A. Integration of steroid and growth factor pathways in breast cancer: focus on signal transducers and activators of transcription and their potential role in resistance. Mol. Endocrinol., 2007, 21(7), 1499-1512. doi: 10.1210/me.2007-0109 PMID: 17456797
  97. Ball, D.P.; Lewis, A.M.; Williams, D.; Resetca, D.; Wilson, D.J.; Gunning, P.T. Signal transducer and activator of transcription 3 (STAT3) inhibitor, S3I-201, acts as a potent and non-selective alkylating agent. Oncotarget, 2016, 7(15), 20669-20679. doi: 10.18632/oncotarget.7838 PMID: 26942696
  98. Li, R.; Zhang, H.; Yu, W.; Chen, Y.; Gui, B.; Liang, J.; Wang, Y.; Sun, L.; Yang, X.; Zhang, Y.; Shi, L.; Li, Y.; Shang, Y. ZIP: A novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis. EMBO J., 2009, 28(18), 2763-2776. doi: 10.1038/emboj.2009.211 PMID: 19644445
  99. Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457. doi: 10.1038/ni.3153 PMID: 25898198
  100. Mauer, J.; Denson, J.L.; Brüning, J.C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol., 2015, 36(2), 92-101. doi: 10.1016/j.it.2014.12.008 PMID: 25616716
  101. Siersbæk, R.; Scabia, V.; Nagarajan, S.; Chernukhin, I.; Papachristou, E.K.; Broome, R.; Johnston, S.J.; Joosten, S.E.P.; Green, A.R.; Kumar, S.; Jones, J.; Omarjee, S.; Alvarez-Fernandez, R.; Glont, S.; Aitken, S.J.; Kishore, K.; Cheeseman, D.; Rakha, E.A.; D'Santos, C.; Zwart, W.; Russell, A.; Brisken, C.; Carroll, J.S. IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell, 2020, 38(3), 412-423.e9. doi: 10.1016/j.ccell.2020.06.007 PMID: 32679107
  102. Jiang, M.; Chen, J.; Zhang, W.; Zhang, R.; Ye, Y.; Liu, P.; Yu, W.; Wei, F.; Ren, X.; Yu, J. Interleukin-6 Trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol., 2017, 8, 1840. doi: 10.3389/fimmu.2017.01840 PMID: 29326716
  103. Bachelot, T.; Ray-Coquard, I.; Menetrier-Caux, C.; Rastkha, M.; Duc, A.; Blay, J-Y. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer, 2003, 88(11), 1721-1726. doi: 10.1038/sj.bjc.6600956 PMID: 12771987
  104. Salgado, R.; Junius, S.; Benoy, I.; Van Dam, P.; Vermeulen, P.; Van Marck, E.; Huget, P.; Dirix, L.Y. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer, 2003, 103(5), 642-646. doi: 10.1002/ijc.10833 PMID: 12494472
  105. Hashizume, M.; Tan, S.L.; Takano, J.; Ohsawa, K.; Hasada, I.; Hanasaki, A.; Ito, I.; Mihara, M.; Nishida, K. Tocilizumab, a humanized anti-IL-6R antibody, as an emerging therapeutic option for rheumatoid arthritis: molecular and cellular mechanistic insights. Int. Rev. Immunol., 2015, 34(3), 265-279. doi: 10.3109/08830185.2014.938325 PMID: 25099958
  106. Shou, J.; Massarweh, S.; Osborne, C.K.; Wakeling, A.E.; Ali, S.; Weiss, H.; Schiff, R. Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl. Cancer Inst., 2004, 96(12), 926-935. doi: 10.1093/jnci/djh166 PMID: 15199112
  107. Zhu, Y.; Yan, Y.; Principe, D.R.; Zou, X.; Vassilopoulos, A.; Gius, D. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer Metab., 2014, 2(1), 15. doi: 10.1186/2049-3002-2-15 PMID: 25332769
  108. Miyo, M.; Yamamoto, H.; Konno, M.; Colvin, H.; Nishida, N.; Koseki, J.; Kawamoto, K.; Ogawa, H.; Hamabe, A.; Uemura, M.; Nishimura, J.; Hata, T.; Takemasa, I.; Mizushima, T.; Doki, Y.; Mori, M.; Ishii, H. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br. J. Cancer, 2015, 113(3), 492-499. doi: 10.1038/bjc.2015.226 PMID: 26086877
  109. Jeong, S.M.; Xiao, C.; Finley, L.W.S.; Lahusen, T.; Souza, A.L.; Pierce, K.; Li, Y.H.; Wang, X.; Laurent, G.; German, N.J.; Xu, X.; Li, C.; Wang, R.H.; Lee, J.; Csibi, A.; Cerione, R.; Blenis, J.; Clish, C.B.; Kimmelman, A.; Deng, C.X.; Haigis, M.C. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell, 2013, 23(4), 450-463. doi: 10.1016/j.ccr.2013.02.024 PMID: 23562301
  110. Wang, Y.S.; Du, L.; Liang, X.; Meng, P.; Bi, L.; Wang, Y.; Wang, C.; Tang, B. Sirtuin 4 depletion promotes hepatocellular carcinoma tumorigenesis through regulating adenosine‐monophosphate–activated protein kinase alpha/mammalian target of rapamycin axis in mice. Hepatology, 2019, 69(4), 1614-1631. doi: 10.1002/hep.30421 PMID: 30552782
  111. Li, Y.; Zhou, Y.; Wang, F.; Chen, X.; Wang, C.; Wang, J.; Liu, T.; Li, Y.; He, B. SIRT4 is the last puzzle of mitochondrial sirtuins. Bioorg. Med. Chem., 2018, 26(14), 3861-3865. doi: 10.1016/j.bmc.2018.07.031 PMID: 30033389
  112. Huang, G.; Zhu, G. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. OncoTargets Ther., 2018, 11, 3395-3400. doi: 10.2147/OTT.S157724 PMID: 29928130
  113. Xing, J.; Li, J.; Fu, L.; Gai, J.; Guan, J.; Li, Q. SIRT4 enhances the sensitivity of ER‐positive breast cancer to tamoxifen by inhibiting the IL‐6/STAT3 signal pathway. Cancer Med., 2019, 8(16), 7086-7097. doi: 10.1002/cam4.2557 PMID: 31573734
  114. Shi, Q.; Liu, T.; Zhang, X.; Geng, J.; He, X.; Nu, M.; Pang, D. Decreased sirtuin 4 expression is associated with poor prognosis in patients with invasive breast cancer. Oncol. Lett., 2016, 12(4), 2606-2612. doi: 10.3892/ol.2016.5021 PMID: 27698834
  115. Stylianou, S.; Clarke, R.B.; Brennan, K. Aberrant activation of notch signaling in human breast cancer. Cancer Res., 2006, 66(3), 1517-1525. doi: 10.1158/0008-5472.CAN-05-3054 PMID: 16452208
  116. Leong, K.G.; Karsan, A. Recent insights into the role of Notch signaling in tumorigenesis. Blood, 2006, 107(6), 2223-2233. doi: 10.1182/blood-2005-08-3329 PMID: 16291593
  117. Rizzo, P.; Miao, H.; D'Souza, G.; Osipo, C.; Yun, J.; Zhao, H.; Mascarenhas, J.; Wyatt, D.; Antico, G.; Hao, L.; Yao, K.; Rajan, P.; Hicks, C.; Siziopikou, K.; Selvaggi, S.; Bashir, A.; Bhandari, D.; Marchese, A.; Lendahl, U.; Qin, J-Z.; Tonetti, D.A.; Albain, K.; Nickoloff, B.J.; Miele, L.; Miele, L. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res., 2008, 68(13), 5226-5235. doi: 10.1158/0008-5472.CAN-07-5744 PMID: 18593923
  118. Lombardo, Y.; Faronato, M.; Filipovic, A.; Vircillo, V.; Magnani, L.; Coombes, R.C. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells. Breast Cancer Res., 2014, 16(3), R62. doi: 10.1186/bcr3675 PMID: 24919951
  119. Kamakura, S.; Oishi, K.; Yoshimatsu, T.; Nakafuku, M.; Masuyama, N.; Gotoh, Y. Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nat. Cell Biol., 2004, 6(6), 547-554. doi: 10.1038/ncb1138 PMID: 15156153
  120. Chen, X.; Zha, X.; Chen, W.; Zhu, T.; Qiu, J.; Røe, O.D.; Li, J.; Wang, Z.; Yin, Y. Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed. Pharmacother., 2013, 67(1), 22-30. doi: 10.1016/j.biopha.2012.10.001 PMID: 23199901
  121. O'Brien, S.N.; Welter, B.H.; Price, T.M. Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun., 1999, 259(3), 695-698. doi: 10.1006/bbrc.1999.0843 PMID: 10364481
  122. Ishikawa, M.; Kitayama, J.; Nagawa, H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res., 2004, 10(13), 4325-4331. doi: 10.1158/1078-0432.CCR-03-0749 PMID: 15240518
  123. Fiorio, E.; Mercanti, A.; Terrasi, M.; Micciolo, R.; Remo, A.; Auriemma, A.; Molino, A.; Parolin, V.; Di Stefano, B.; Bonetti, F.; Giordano, A.; Cetto, G.L.; Surmacz, E. Leptin/HER2 crosstalk in breast cancer: In vitro study and preliminary in vivo analysis. BMC Cancer, 2008, 8(1), 305. doi: 10.1186/1471-2407-8-305 PMID: 18945363
  124. Papanikolaou, V.; Stefanou, N.; Dubos, S.; Papathanasiou, I.; Palianopoulou, M.; Valiakou, V.; Tsezou, A. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell. Oncol., 2015, 38(2), 155-164. doi: 10.1007/s13402-014-0213-5 PMID: 25539992

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023