Imidazole and Biphenyl Derivatives as Anti-cancer Agents for Glioma Therapeutics: Computational Drug Repurposing Strategy


Цитировать

Полный текст

Аннотация

Background: Targeting mutated isocitrate dehydrogenase 1 (mIDH1) is one of the key therapeutic strategies for the treatment of glioma. Few inhibitors, such as ivosidenib and vorasidenib, have been identified as selective inhibitors of mIDH1. However, dose-dependent toxicity and limited brain penetration of the blood-brain barrier remain the major limitations of the treatment procedures using these inhibitors.

Objective: In the present study, computational drug repurposing strategies were employed to identify potent mIDH1- specific inhibitors from the 11,808 small molecules listed in the DrugBank repository.

Methods: Tanimoto coefficient (Tc) calculations were initially used to retrieve compounds with structurally similar scaffolds to ivosidenib. The resultant compounds were then subjected to molecular docking to discriminate the binders from the non-binders. The binding affinities and pharmacokinetic properties of the screened compounds were examined using prime Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) and QikProp algorithm, respectively. The conformational stability of these molecules was validated using 100 ns molecular dynamics simulation.

Results: Together, these processes led to the identification of three-hit molecules, namely DB12001, DB08026, and DB03346, as potential inhibitors of the mIDH1 protein. Of note, the binding free energy calculations and MD simulation studies emphasized the greater binding affinity and structural stability of the hit compounds towards the mIDH1 protein.

Conclusion: The collective evidence from our study indicates the activity of DB12001 against recurrent glioblastoma, which, in turn, highlights the accuracy of our adapted strategy. Hence, we hypothesize that the identified lead molecules could be translated for the development of mIDH1 inhibitors in the near future.

Об авторах

Poornimaa Murali

Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology

Email: info@benthamscience.net

Ramanathan Karuppasamy

Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Lee, J.H.; Lee, J.E.; Kahng, J.Y.; Kim, S.H.; Park, J.S.; Yoon, S.J.; Um, J.Y.; Kim, W.K.; Lee, J.K.; Park, J.; Kim, E.H.; Lee, J.H.; Lee, J.H.; Chung, W.S.; Ju, Y.S.; Park, S.H.; Chang, J.H.; Kang, S.G.; Lee, J.H. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature, 2018, 560(7717), 243-247. doi: 10.1038/s41586-018-0389-3 PMID: 30069053
  2. Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; French, P.; Hegi, M.E.; Jakola, A.S.; Platten, M.; Roth, P.; Rudà, R.; Short, S.; Smits, M.; Taphoorn, M.J.B.; von Deimling, A.; Westphal, M.; Soffietti, R.; Reifenberger, G.; Wick, W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol., 2021, 18(3), 170-186. doi: 10.1038/s41571-020-00447-z PMID: 33293629
  3. Reifenberger, G.; Wirsching, H.G.; Knobbe-Thomsen, C.B.; Weller, M. Advances in the molecular genetics of gliomas — implications for classification and therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 434-452. doi: 10.1038/nrclinonc.2016.204 PMID: 28031556
  4. Kalidindi, N.; Or, R.; Babak, S.; Mason, W. Molecular classification of diffuse gliomas. Can. J. Neurol. Sci., 2020, 47(4), 464-473. doi: 10.1017/cjn.2020.10 PMID: 31918786
  5. Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Bigner, D.D. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med., 2009, 360(8), 765-773. doi: 10.1056/NEJMoa0808710 PMID: 19228619
  6. Mellai, M.; Caldera, V.; Annovazzi, L.; Schiffer, D. The distribution and significance of IDH mutations in gliomas. In: Evolution of the Molecular Biology of Brain Tumors and Therapeutic Implications; Intechopen: London, 2013; pp. 299-342. doi: 10.5772/intechopen.97380
  7. Wang, Y.; Tang, S.; Lai, H.; Jin, R.; Long, X.; Li, N.; Tang, Y.; Guo, H.; Yao, X.; Leung, E.L.H. Discovery of novel IDH1 inhibitor through comparative structure-based virtual screening. Front. Pharmacol., 2020, 11, 579768. doi: 10.3389/fphar.2020.579768 PMID: 33262701
  8. Suzuki, H.; Aoki, K.; Chiba, K.; Sato, Y.; Shiozawa, Y.; Shiraishi, Y.; Shimamura, T.; Niida, A.; Motomura, K.; Ohka, F.; Yamamoto, T.; Tanahashi, K.; Ranjit, M.; Wakabayashi, T.; Yoshizato, T.; Kataoka, K.; Yoshida, K.; Nagata, Y.; Sato-Otsubo, A.; Tanaka, H.; Sanada, M.; Kondo, Y.; Nakamura, H.; Mizoguchi, M.; Abe, T.; Muragaki, Y.; Watanabe, R.; Ito, I.; Miyano, S.; Natsume, A.; Ogawa, S. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet., 2015, 47(5), 458-468. doi: 10.1038/ng.3273 PMID: 25848751
  9. Lu, V.M.; McDonald, K.L. Isocitrate dehydrogenase 1 mutation subtypes at site 132 and their translational potential in glioma. CNS Oncol., 2018, 7(1), 41-50. doi: 10.2217/cns-2017-0019 PMID: 29303363
  10. Li, N.; Wang, F.; Niu, S.; Cao, J.; Wu, K.; Li, Y.; Yin, N.; Zhang, X.; Zhu, W.; Yin, Y. Discovery of novel inhibitors of Streptococcus pneumoniae based on the virtual screening with the homology-modeled structure of histidine kinase (VicK). BMC Microbiol., 2009, 9(1), 129. doi: 10.1186/1471-2180-9-129 PMID: 19558698
  11. Lu, I.L.; Huang, C.F.; Peng, Y.H.; Lin, Y.T.; Hsieh, H.P.; Chen, C.T.; Lien, T.W.; Lee, H.J.; Mahindroo, N.; Prakash, E.; Yueh, A.; Chen, H.Y.; Goparaju, C.M.V.; Chen, X.; Liao, C.C.; Chao, Y.S.; Hsu, J.T.A.; Wu, S.Y. Structure-based drug design of a novel family of PPARgamma partial agonists: Virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. J. Med. Chem., 2006, 49(9), 2703-2712. doi: 10.1021/jm051129s PMID: 16640330
  12. Budzik, B.; Garzya, V.; Shi, D.; Walker, G.; Woolley-Roberts, M.; Pardoe, J.; Lucas, A.; Tehan, B.; Rivero, R.A.; Langmead, C.J.; Watson, J.; Wu, Z.; Forbes, I.T.; Jin, J. Novel N-substituted benzimidazolones as potent, selective, cns-penetrant, and orally active m1 machr agonists. ACS Med. Chem. Lett., 2010, 1(6), 244-248. doi: 10.1021/ml100105x PMID: 24900202
  13. Becker, O.M.; Dhanoa, D.S.; Marantz, Y.; Chen, D.; Shacham, S.; Cheruku, S.; Heifetz, A.; Mohanty, P.; Fichman, M.; Sharadendu, A.; Nudelman, R.; Kauffman, M.; Noiman, S. An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J. Med. Chem., 2006, 49(11), 3116-3135. doi: 10.1021/jm0508641 PMID: 16722631
  14. Balfour, J.A.; Wilde, M.I. Dorzolamide. Drugs Aging, 1997, 10(5), 384-403. doi: 10.2165/00002512-199710050-00006 PMID: 9143858
  15. Vijayakrishnan, R. Structure-based drug design and modern medicine. J. Postgrad. Med., 2009, 55(4), 301-304. doi: 10.4103/0022-3859.58943 PMID: 20083886
  16. Eagling, V.A.; Back, D.J.; Barry, M.G. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br. J. Clin. Pharmacol., 1997, 44(2), 190-194. doi: 10.1046/j.1365-2125.1997.00644.x PMID: 9278209
  17. Van Drie, J.H. Computer-aided drug design: The next 20 years. J. Comput. Aided Mol. Des., 2007, 21(10-11), 591-601. doi: 10.1007/s10822-007-9142-y PMID: 17989929
  18. Liu, K.; Pu, J.; Nie, Z.; Shi, Y.; Jiang, L.; Wu, Q.; Chen, Y.; Yang, C. Ivacaftor inhibits glioblastoma stem cell maintenance and tumor progression. Front. Cell Dev. Biol., 2021, 9, 678209. doi: 10.3389/fcell.2021.678209 PMID: 34046412
  19. Liu, K.; Jiang, L.; Shi, Y.; Liu, B.; He, Y.; Shen, Q.; Jiang, X.; Nie, Z.; Pu, J.; Yang, C.; Chen, Y. Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation. Cell Death Differ., 2022, 29(9), 1834-1849. doi: 10.1038/s41418-022-00969-2 PMID: 35301431
  20. Rohle, D.; Popovici-Muller, J.; Palaskas, N.; Turcan, S.; Grommes, C.; Campos, C.; Tsoi, J.; Clark, O.; Oldrini, B.; Komisopoulou, E.; Kunii, K.; Pedraza, A.; Schalm, S.; Silverman, L.; Miller, A.; Wang, F.; Yang, H.; Chen, Y.; Kernytsky, A.; Rosenblum, M.K.; Liu, W.; Biller, S.A.; Su, S.M.; Brennan, C.W.; Chan, T.A.; Graeber, T.G.; Yen, K.E.; Mellinghoff, I.K. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 2013, 340(6132), 626-630. doi: 10.1126/science.1236062 PMID: 23558169
  21. Davis, M.I.; Gross, S.; Shen, M.; Straley, K.S.; Pragani, R.; Lea, W.A.; Popovici-Muller, J.; DeLaBarre, B.; Artin, E.; Thorne, N.; Auld, D.S.; Li, Z.; Dang, L.; Boxer, M.B.; Simeonov, A. Biochemical, cellular, and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1. J. Biol. Chem., 2014, 289(20), 13717-13725. doi: 10.1074/jbc.M113.511030 PMID: 24668804
  22. Dhillon, S. Ivosidenib: First global approval. Drugs, 2018, 78(14), 1509-1516. doi: 10.1007/s40265-018-0978-3 PMID: 30209701
  23. Konteatis, Z.; Artin, E.; Nicolay, B.; Straley, K.; Padyana, A.K.; Jin, L.; Chen, Y.; Narayaraswamy, R.; Tong, S.; Wang, F.; Zhou, D.; Cui, D.; Cai, Z.; Luo, Z.; Fang, C.; Tang, H.; Lv, X.; Nagaraja, R.; Yang, H.; Su, S.S.M.; Sui, Z.; Dang, L.; Yen, K.; Popovici-Muller, J.; Codega, P.; Campos, C.; Mellinghoff, I.K.; Biller, S.A. Vorasidenib (AG-881): A first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med. Chem. Lett., 2020, 11(2), 101-107. doi: 10.1021/acsmedchemlett.9b00509 PMID: 32071674
  24. Caravella, J.A.; Lin, J.; Diebold, R.B.; Campbell, A.M.; Ericsson, A.; Gustafson, G.; Wang, Z.; Castro, J.; Clarke, A.; Gotur, D.; Josephine, H.R.; Katz, M.; Kershaw, M.; Yao, L.; Toms, A.V.; Barr, K.J.; Dinsmore, C.J.; Walker, D.; Ashwell, S.; Lu, W. Structure-based design and identification of FT-2102 (Olutasidenib), a potent mutant-selective IDH1 inhibitor. J. Med. Chem., 2020, 63(4), 1612-1623. doi: 10.1021/acs.jmedchem.9b01423 PMID: 31971798
  25. Zou, F.; Pusch, S.; Eisel, J.; Ma, T.; Zhu, Q.; Deng, D.; Gu, Y.; Xu, Y.; von Deimling, A.; Zha, X. Identification of a novel selective inhibitor of mutant isocitrate dehydrogenase 1 at allosteric site by docking-based virtual screening. RSC Advances, 2016, 6(99), 96735-96742. doi: 10.1039/C6RA21617J
  26. Zou, F.; Pusch, S.; Hua, J.; Ma, T.; Yang, L.; Zhu, Q.; Xu, Y.; Gu, Y.; von Deimling, A.; Zha, X. Identification of novel allosteric inhibitors of mutant isocitrate dehydrogenase 1 by cross docking-based virtual screening. Bioorg. Med. Chem. Lett., 2018, 28(3), 388-393. doi: 10.1016/j.bmcl.2017.12.030 PMID: 29290542
  27. Zheng, M.; Sun, W.; Gao, S.; Luan, S.; Li, D.; Chen, R.; Zhang, Q.; Chen, L.; Huang, J.; Li, H. Structure based discovery of clomifene as a potent inhibitor of cancer-associated mutant IDH1. Oncotarget, 2017, 8(27), 44255-44265. doi: 10.18632/oncotarget.17464 PMID: 28498812
  28. Duan, Z.; Liu, J.; Niu, L.; Wang, J.; Feng, M.; Chen, H.; Luo, C. Discovery of DC_H31 as potential mutant IDH1 inhibitor through NADPH-based high throughput screening. Bioorg. Med. Chem., 2019, 27(15), 3229-3236. doi: 10.1016/j.bmc.2019.05.040 PMID: 31208797
  29. Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234. doi: 10.1007/s10822-013-9644-8 PMID: 23579614
  30. Liu, R.; AbdulHameed, M.D.M.; Wallqvist, A. Teaching an old dog new tricks: Strategies that improve early recognition in similarity-based virtual screening. Front Chem., 2019, 7, 701. doi: 10.3389/fchem.2019.00701 PMID: 31709231
  31. Capecchi, A.; Probst, D.; Reymond, J.L. One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome. J. Cheminform., 2020, 12(1), 43. doi: 10.1186/s13321-020-00445-4 PMID: 33431010
  32. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
  33. Poonan, P.; Agoni, C.; Soliman, M.E.S. Dual‐knockout of mutant isocitrate dehydrogenase 1 and 2 subtypes towards glioma therapy: Structural mechanistic insights on the role of vorasidenib. Chem. Biodivers., 2021, 18(7), e2100110. doi: 10.1002/cbdv.202100110 PMID: 33982420
  34. Repasky, M.P.; Shelley, M.; Friesner, R.A. Flexible ligand docking with glide. Curr. Protoc. Bioinformatics, 2007, 8(1), 12. PMID: 18428795
  35. Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem., 2006, 49(16), 4805-4808. doi: 10.1021/jm060522a PMID: 16884290
  36. Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; Zheng, M.; Jiang, H. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys., 2015, 48(4), 488-515. doi: 10.1017/S0033583515000190 PMID: 26328949
  37. Leeson, P.D.; Young, R.J. Molecular property design: Does everyone get it. ACS Med. Chem. Lett., 2015, 6(7), 722-725. doi: 10.1021/acsmedchemlett.5b00157 PMID: 26191353
  38. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
  39. Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 2000, 16(8), 747-748. doi: 10.1093/bioinformatics/16.8.747 PMID: 11099264
  40. Alamri, M.A. Pharmacoinformatics and molecular dynamic simulation studies to identify potential small-molecule inhibitors of WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of WNK kinases. Arab. J. Chem., 2020, 13(4), 5107-5117. doi: 10.1016/j.arabjc.2020.02.010
  41. Wang, H.; Dommert, F.; Holm, C. Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. J. Chem. Phys., 2010, 133(3), 034117. doi: 10.1063/1.3446812 PMID: 20649318
  42. Amiri, S.; Sansom, M.S.P.; Biggin, P.C. Molecular dynamics studies of AChBP with nicotine and carbamylcholine: The role of water in the binding pocket. Protein Eng. Des. Sel., 2007, 20(7), 353-359. doi: 10.1093/protein/gzm029 PMID: 17595341
  43. Kumar, A.; Rajendran, V.; Sethumadhavan, R.; Purohit, R. Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS One, 2013, 8(10), e77453. doi: 10.1371/journal.pone.0077453 PMID: 24146998
  44. Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-art in ligand-based virtual screening. Drug Discov, 2011, 16(9-10), 372-376. PMID: 21349346
  45. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196. doi: 10.1021/jm051256o PMID: 17034125
  46. Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des., 2000, 18(1), 113-135. doi: 10.1023/A:1008763014207
  47. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461. doi: 10.1517/17460441.2015.1032936 PMID: 25835573
  48. Li, J.; Zhou, N.; Luo, K.; Zhang, W.; Li, X.; Wu, C.; Bao, J. In silico discovery of potential VEGFR-2 inhibitors from natural derivatives for anti-angiogenesis therapy. Int. J. Mol. Sci., 2014, 15(9), 15994-16011. doi: 10.3390/ijms150915994 PMID: 25216334
  49. Golub, D.; Iyengar, N.; Dogra, S.; Wong, T.; Bready, D.; Tang, K.; Modrek, A.S.; Placantonakis, D.G. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front. Oncol., 2019, 9, 417. doi: 10.3389/fonc.2019.00417 PMID: 31165048
  50. Karthick, V.; Ramanathan, K. Computational investigation of oseltamivir resistance in influenza A (H5N1) virus. Med. Chem. Res., 2013, 22(12), 5764-5771. doi: 10.1007/s00044-013-0551-2
  51. Patnaik, A.; Rosen, L.S.; Tolaney, S.M.; Tolcher, A.W.; Goldman, J.W.; Gandhi, L.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Hilton, J.F.; Nasir, A.; Beckmann, R.P.; Schade, A.E.; Fulford, A.D.; Nguyen, T.S.; Martinez, R.; Kulanthaivel, P.; Li, L.Q.; Frenzel, M.; Cronier, D.M.; Chan, E.M.; Flaherty, K.T.; Wen, P.Y.; Shapiro, G.I. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov., 2016, 6(7), 740-753. doi: 10.1158/2159-8290.CD-16-0095 PMID: 27217383
  52. Tate, S.C.; Sykes, A.K.; Kulanthaivel, P.; Chan, E.M.; Turner, P.K.; Cronier, D.M. A population pharmacokinetic and pharmacodynamic analysis of abemaciclib in a phase I clinical trial in cancer patients. Clin. Pharmacokinet., 2018, 57(3), 335-344. doi: 10.1007/s40262-017-0559-8 PMID: 28540640
  53. Wender, I.O.; Haines, K.; Jahanzeb, M. Response to abemaciclib after 10 lines of therapy including palbociclib in metastatic breast cancer: A case report with literature review. Oncol. Ther., 2020, 8(2), 351-358. doi: 10.1007/s40487-020-00126-0 PMID: 32876928
  54. Kamal, A.; Bharath, K.G.; Lakshma, N.V.; Reddy, V.S.; Shaik, A.B.; Rajender, R.; Kashi, R.M. Design, synthesis and biological evaluation of imidazopyridine/imidazopyrimidine-benzimidazole conjugates as potential anticancer agents. MedChemComm, 2015, 6(4), 606-612. doi: 10.1039/C4MD00400K
  55. Mohit, A.A.; Martin, J.H.; Miller, C.A. p493F12 kinase: A novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron, 1995, 14(1), 67-78. doi: 10.1016/0896-6273(95)90241-4 PMID: 7826642
  56. Purkey, H.E.; Palaninathan, S.K.; Kent, K.C.; Smith, C.; Safe, S.H.; Sacchettini, J.C.; Kelly, J.W. Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: Rationalizing rodent PCB toxicity. Chem. Biol., 2004, 11(12), 1719-1728. doi: 10.1016/j.chembiol.2004.10.009 PMID: 15610856
  57. Ferreira, L.M.; Azambuja, J.H.; da Silveira, E.F.; Marcondes, S.M.H.; da Cruz, W.F.B.; Costa, P.V.; Gelsleichter, N.E.; Beckenkamp, L.R.; da Cruz, F.M.; Spanevello, R.M.; Wink, M.R.; de Cassia, S.A.A.; Nogueira, C.W.; Braganhol, E.; Cruz, L. Antitumor action of diphenyl diselenide nanocapsules: In vitro assessments and preclinical evidence in an animal model of glioblastoma multiforme. J. Trace Elem. Med. Biol., 2019, 55, 180-189. doi: 10.1016/j.jtemb.2019.06.010 PMID: 31345356
  58. Wade, R.C.; Goodford, P.J. The role of hydrogen-bonds in drug binding. Prog. Clin. Biol. Res., 1989, 289, 433-444. PMID: 2726808
  59. Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 2010, 5(8), e12029. doi: 10.1371/journal.pone.0012029 PMID: 20808434
  60. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249. doi: 10.1111/j.1476-5381.2010.01127.x PMID: 21091654
  61. Reynolds, C.H.; Reynolds, R.C. Group additivity in ligand binding affinity: An alternative approach to ligand efficiency. J. Chem. Inf. Model., 2017, 57(12), 3086-3093. doi: 10.1021/acs.jcim.7b00381 PMID: 29111708
  62. Al-Jarf, R.; de Sá, A.G.C.; Pires, D.E.V.; Ascher, D.B. pdCSM-cancer: Using graph-based signatures to identify small molecules with anticancer properties. J. Chem. Inf. Model., 2021, 61(7), 3314-3322. doi: 10.1021/acs.jcim.1c00168 PMID: 34213323
  63. Ali, S.; Khan, F.; Mohammad, T.; Lan, D.; Hassan, M.; Wang, Y. Identification and evaluation of inhibitors of lipase from Malassezia restricta using virtual high-throughput screening and molecular dynamics studies. Int. J. Mol. Sci., 2019, 20(4), 884. doi: 10.3390/ijms20040884 PMID: 30781686
  64. Hubbard, R.E.; Kamran, H.M. Hydrogen bonds in proteins: Role and strength. In: Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd: Chichester, 2010; pp. 1-7. doi: 10.1002/9780470015902.a0003011.pub2
  65. Baig, M.H.; Sudhakar, D.R.; Kalaiarasan, P.; Subbarao, N.; Wadhawa, G.; Lohani, M.; Khan, M.K.A.; Khan, A.U. Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS One, 2014, 9(12), e112456. doi: 10.1371/journal.pone.0112456 PMID: 25479359
  66. Shukla, R.; Singh, T.R. Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer's disease. J. Biomol. Struct. Dyn., 2019, 38(1), 248-262. PMID: 30688165
  67. Wolf, A.; Kirschner, K.N. Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. J. Mol. Model., 2013, 19(2), 539-549. doi: 10.1007/s00894-012-1563-4 PMID: 22961589
  68. Verma, S.; Grover, S.; Tyagi, C.; Goyal, S.; Jamal, S.; Singh, A.; Grover, A. Hydrophobic interactions are a key to MDM2 inhibition by polyphenols as revealed by molecular dynamics simulations and MM/PBSA free energy calculations. PLoS One, 2016, 11(2), e0149014. doi: 10.1371/journal.pone.0149014 PMID: 26863418
  69. Tavernelli, I.; Cotesta, S.; Di Iorio, E.E. Protein dynamics, thermal stability, and free-energy landscapes: A molecular dynamics investigation. Biophys. J., 2003, 85(4), 2641-2649. doi: 10.1016/S0006-3495(03)74687-6 PMID: 14507727

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023