The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications


Цитировать

Полный текст

Аннотация

Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and in vivo investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.

Об авторах

Haodong He

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Jingjie Yang

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Yan Zhou

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Xinyan Zheng

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Lihan Chen

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Zhujun Mao

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Chuyuan Liao

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Tongtong Li

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Haoran Liu

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Email: info@benthamscience.net

Gang Zhou

College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine,, China Three Gorges University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Houdong Li

College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, China Three Gorges University,

Автор, ответственный за переписку.
Email: info@benthamscience.net

Chengfu Yuan

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045. doi: 10.1083/jcb.202009045 PMID: 33464299
  2. Jantrapirom, S.; Koonrungsesomboon, N.; Yoshida, H.; M Candeias, M.; Pruksakorn, D.; Lo Piccolo, L. Long noncoding RNA-dependent methylation of nonhistone proteins. Wiley Interdiscip. Rev. RNA, 2021, 12(6), e1661. doi: 10.1002/wrna.1661 PMID: 33913612
  3. McCabe, E.M.; Rasmussen, T.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin. Cancer Biol., 2021, 75, 38-48. doi: 10.1016/j.semcancer.2020.12.012 PMID: 33346133
  4. Herman, A.B.; Tsitsipatis, D.; Gorospe, M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell, 2022, 82(12), 2252-2266. doi: 10.1016/j.molcel.2022.05.027 PMID: 35714586
  5. Nojima, T.; Proudfoot, N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol., 2022, 23(6), 389-406. doi: 10.1038/s41580-021-00447-6 PMID: 35079163
  6. Pang, B.; Wang, Q.; Ning, S.; Wu, J.; Zhang, X.; Chen, Y.; Xu, S. Landscape of tumor suppressor long noncoding RNAs in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 79. doi: 10.1186/s13046-019-1096-0 PMID: 30764831
  7. Tan, Y.T.; Lin, J.F.; Li, T.; Li, J.J.; Xu, R.H.; Ju, H.Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. (Lond.), 2021, 41(2), 109-120. doi: 10.1002/cac2.12108 PMID: 33119215
  8. Wang, W.; Min, L.; Qiu, X.; Wu, X.; Liu, C.; Ma, J.; Zhang, D.; Zhu, L. Biological function of long non-coding RNA (LncRNA) xist. Front. Cell Dev. Biol., 2021, 9, 645647. doi: 10.3389/fcell.2021.645647 PMID: 34178980
  9. Zhu, X.; Jiang, S.; Wu, Z.; Liu, T.; Zhang, W.; Wu, L.; Xu, L.; Shao, M. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis. Bioengineered, 2021, 12(1), 578-588. doi: 10.1080/21655979.2021.1882133 PMID: 33517826
  10. Zhang, Y. LncRNA-encoded peptides in cancer. J. Hematol. Oncol., 2024, 17(1), 66. doi: 10.1186/s13045-024-01591-0 PMID: 39135098
  11. Yang, G.; Li, Z.; Dong, L.; Zhou, F. lncRNA ADAMTS9-AS1 promotes bladder cancer cell invasion, migration, and inhibits apoptosis and autophagy through PI3K/AKT/mTOR signaling pathway. Int. J. Biochem. Cell Biol., 2021, 140, 106069. doi: 10.1016/j.biocel.2021.106069 PMID: 34428588
  12. Zhou, C.; Zhao, H.; Wang, S.; Dong, C.; Yang, F.; Zhang, J. LncRNA ADAMTS9-AS1 knockdown suppresses cell proliferation and migration in glioma via down-regulating Wnt/β-catenin signaling pathway. Bosn. J. Basic Med. Sci., 2021, 22(3), 395-402. doi: 10.17305/bjbms.2021.6199 PMID: 34923953
  13. Javanmard, A.R.; Jahanbakhshi, A.; Nemati, H.; Mowla, S.J.; Soltani, B.M. ADAMTS9-AS1 long non coding RNA sponges miR 128 and miR-150 to regulate ras/MAPK signaling pathway in glioma. Cell. Mol. Neurobiol., 2023, 43(5), 2309-2322. doi: 10.1007/s10571-022-01311-7 PMID: 36449154
  14. Chen, J.; Cheng, L.; Zou, W.; Wang, R.; Wang, X.; Chen, Z. ADAMTS9-AS1 constrains breast cancer cell invasion and proliferation via sequestering miR-301b-3p. Front. Cell Dev. Biol., 2021, 9, 719993. doi: 10.3389/fcell.2021.719993 PMID: 34900984
  15. Liu, W.; Luo, W.; Zhou, P.; Cheng, Y.; Qian, L. Bioinformatics analysis and functional verification of ADAMTS9-AS1/AS2 in lung adenocarcinoma. Front. Oncol., 2021, 11, 681777. doi: 10.3389/fonc.2021.681777 PMID: 34395250
  16. Li, Z.; Yue, G.; Zhang, T.; Wu, J.; Tian, X. LncRNA ADAMTS9-AS1 knockdown restricts cell proliferation and EMT in non-small cell lung cancer. Histol. Histopathol., 2021, 36(10), 1063-1072. doi: 10.14670/hh-18-347 PMID: 34085704
  17. Wang, P.; Zhang, Y.; Lv, X.; Zhou, J.; Cang, S.; Song, Y. LncRNA ADAMTS9-AS1 inhibits the stemness of lung adenocarcinoma cells by regulating miR-5009-3p/NPNT axis. Genomics, 2023, 115(3), 110596. doi: 10.1016/j.ygeno.2023.110596 PMID: 36870548
  18. Zhang, Z.; Li, H.; Hu, Y.; Wang, F. Long non-coding RNA ADAMTS9-AS1 exacerbates cell proliferation, migration, and invasion via triggering of the PI3K/AKT/mTOR pathway in hepatocellular carcinoma cells. Am. J. Transl. Res., 2020, 12(9), 5696-5707. PMID: 33042449
  19. Li, N.; Li, J.; Mi, Q.; Xie, Y.; Li, P.; Wang, L.; Binang, H.; Wang, Q.; Wang, Y.; Chen, Y.; Wang, Y.; Mao, H.; Du, L.; Wang, C. Long non‐coding RNA ADAMTS9‐AS1 suppresses colorectal cancer by inhibiting the Wnt/β‐catenin signalling pathway and is a potential diagnostic biomarker. J. Cell. Mol. Med., 2020, 24(19), 11318-11329. doi: 10.1111/jcmm.15713 PMID: 32889785
  20. Chen, W.; Tu, Q.; Yu, L.; Xu, Y.; Yu, G.; Jia, B.; Cheng, Y.; Wang, Y. LncRNA ADAMTS9-AS1, as prognostic marker, promotes cell proliferation and EMT in colorectal cancer. Hum. Cell, 2020, 33(4), 1133-1141. doi: 10.1007/s13577-020-00388-w PMID: 32918700
  21. Wan, J.; Jiang, S.; Jiang, Y.; Ma, W.; Wang, X.; He, Z.; Wang, X.; Cui, R. Data mining and expression analysis of differential lncRNA ADAMTS9-AS1 in prostate cancer. Front. Genet., 2020, 10, 1377. doi: 10.3389/fgene.2019.01377 PMID: 32153626
  22. Taheri, M.; Badrlou, E.; Hussen, B.M.; Kashi, A.H.; Ghafouri-Fard, S.; Baniahmad, A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front. Oncol., 2023, 13, 1123101. doi: 10.3389/fonc.2023.1123101 PMID: 37025585
  23. Zhou, Z.; Wu, X.; Zhou, Y.; Yan, W. Long non‐coding RNA ADAMTS9‐AS1 inhibits the progression of prostate cancer by modulating the miR‐142‐5p/CCND1 axis. J. Gene Med., 2021, 23(5), e3331. doi: 10.1002/jgm.3331 PMID: 33704879
  24. Fang, S.; Zhao, Y.; Hu, X. LncRNA ADAMTS9-AS1 restrains the aggressive traits of breast carcinoma cells via sponging miR-513a-5p. Cancer Manag. Res., 2020, 12, 10693-10703. doi: 10.2147/CMAR.S266575 PMID: 33149676
  25. Cai, L.; Hu, X.; Ye, L.; Bai, P.; Jie, Y.; Shu, K. Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered, 2022, 13(4), 8226-8239. doi: 10.1080/21655979.2022.2049470 PMID: 35311457
  26. Osmani, L.; Askin, F.; Gabrielson, E.; Li, Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin. Cancer Biol., 2018, 52(Pt 1), 103-109. doi: 10.1016/j.semcancer.2017.11.019 PMID: 29183778
  27. Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103194. doi: 10.1016/j.critrevonc.2020.103194 PMID: 33316418
  28. Friedlaender, A.; Addeo, A.; Russo, A.; Gregorc, V.; Cortinovis, D.; Rolfo, C. Targeted therapies in early stage NSCLC: Hype or hope? Int. J. Mol. Sci., 2020, 21(17), 6329. doi: 10.3390/ijms21176329 PMID: 32878298
  29. Fu, K.; Xie, F.; Wang, F.; Fu, L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J. Hematol. Oncol., 2022, 15(1), 173. doi: 10.1186/s13045-022-01391-4 PMID: 36482474
  30. Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
  31. Bhanvadia, S.K. Bladder cancer survivorship. Curr. Urol. Rep., 2018, 19(12), 111. doi: 10.1007/s11934-018-0860-6 PMID: 30414013
  32. Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder cancer. JAMA, 2020, 324(19), 1980-1991. doi: 10.1001/jama.2020.17598 PMID: 33201207
  33. Dyrskjøt, L.; Hansel, D.E.; Efstathiou, J.A.; Knowles, M.A.; Galsky, M.D.; Teoh, J.; Theodorescu, D. Bladder cancer. Nat. Rev. Dis. Primers, 2023, 9(1), 58. doi: 10.1038/s41572-023-00468-9 PMID: 37884563
  34. Siracusano, S.; Rizzetto, R.; Porcaro, A.B. Bladder cancer genomics. Urologia, 2020, 87(2), 49-56. doi: 10.1177/0391560319899011 PMID: 31942831
  35. Dobruch, J.; Oszczudłowski, M. Bladder cancer: Current challenges and future directions. Medicina (Kaunas), 2021, 57(8), 749. doi: 10.3390/medicina57080749 PMID: 34440955
  36. Ding, Q.; Chen, D.; Wang, W.; Chen, Y. Progress in research on the cribriform component in lung adenocarcinoma. Zhongguo Fei Ai Za Zhi, 2020, 23(7), 621-625. doi: 10.3779/j.issn.1009-3419.2020.101.19 PMID: 32450628
  37. Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health, 2019, 85(1), 8. doi: 10.5334/aogh.2419 PMID: 30741509
  38. Zhang, Q.; Wei, T.; Yan, L.; Zhu, S.; Jin, W.; Bai, Y.; Zeng, Y.; Zhang, X.; Yin, Z.; Yang, J.; Zhang, W.; Wu, M.; Zhang, Y.; Liu, L. Hypoxia-responsive lncRNA AC115619 encodes a micropeptide that suppresses m6A modifications and hepatocellular carcinoma progression. Cancer Res., 2023, 83(15), 2496-2512. doi: 10.1158/0008-5472.CAN-23-0337 PMID: 37326474
  39. Hutchinson, B.D.; Shroff, G.S.; Truong, M.T.; Ko, J.P. Spectrum of lung adenocarcinoma. Semin. Ultrasound CT MR, 2019, 40(3), 255-264. doi: 10.1053/j.sult.2018.11.009 PMID: 31200873
  40. Succony, L.; Rassl, D.M.; Barker, A.P.; McCaughan, F.M.; Rintoul, R.C. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat. Rev., 2021, 99, 102237. doi: 10.1016/j.ctrv.2021.102237 PMID: 34182217
  41. Inamura, K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: Tumor initiation and progression. Int. J. Mol. Sci., 2018, 19(4), 1259. doi: 10.3390/ijms19041259 PMID: 29690599
  42. Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2022, 19(3), 151-172. doi: 10.1038/s41571-021-00573-2 PMID: 34764464
  43. Dhanasekaran, R.; Nault, J.C.; Roberts, L.R.; Zucman-Rossi, J. Genomic medicine and implications for hepatocellular carcinoma prevention and therapy. Gastroenterology, 2019, 156(2), 492-509. doi: 10.1053/j.gastro.2018.11.001 PMID: 30404026
  44. Fei, M.; Guan, J.; Xue, T.; Qin, L.; Tang, C.; Cui, G.; Wang, Y.; Gong, H.; Feng, W. Hypoxia promotes the migration and invasion of human hepatocarcinoma cells through the HIF-1α–IL-8–Akt axis. Cell. Mol. Biol. Lett., 2018, 23(1), 46. doi: 10.1186/s11658-018-0100-6 PMID: 30258464
  45. Lou, W.; Chen, J.; Ding, B.; Chen, D.; Zheng, H.; Jiang, D.; Xu, L.; Bao, C.; Cao, G.; Fan, W. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation. J. Transl. Med., 2018, 16(1), 266. doi: 10.1186/s12967-018-1639-8 PMID: 30268144
  46. Wang, Y.; Deng, B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev., 2023, 42(3), 629-652. doi: 10.1007/s10555-023-10084-4 PMID: 36729264
  47. Wang, L.M.; Englander, Z.K.; Miller, M.L.; Bruce, J.N. Malignant Glioma. Adv. Exp. Med. Biol., 2023, 1405, 1-30. doi: 10.1007/978-3-031-23705-8_1 PMID: 37452933
  48. Yasinjan, F.; Xing, Y.; Geng, H.; Guo, R.; Yang, L.; Liu, Z.; Wang, H. Immunotherapy: A promising approach for glioma treatment. Front. Immunol., 2023, 14, 1255611. doi: 10.3389/fimmu.2023.1255611 PMID: 37744349
  49. Gusyatiner, O.; Hegi, M.E. Glioma epigenetics: From subclassification to novel treatment options. Semin. Cancer Biol., 2018, 51, 50-58. doi: 10.1016/j.semcancer.2017.11.010 PMID: 29170066
  50. Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA, 2013, 310(17), 1842-1850. doi: 10.1001/jama.2013.280319 PMID: 24193082
  51. Campos, B.; Olsen, L.R.; Urup, T.; Poulsen, H.S. A comprehensive profile of recurrent glioblastoma. Oncogene, 2016, 35(45), 5819-5825. doi: 10.1038/onc.2016.85 PMID: 27041580
  52. Klimeck, L.; Heisser, T.; Hoffmeister, M.; Brenner, H. Colorectal cancer: A health and economic problem. Best Pract. Res. Clin. Gastroenterol., 2023, 66, 101839. doi: 10.1016/j.bpg.2023.101839 PMID: 37852707
  53. Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480. doi: 10.1016/S0140-6736(19)32319-0 PMID: 31631858
  54. Thanikachalam, K.; Khan, G. Colorectal cancer and nutrition. Nutrients, 2019, 11(1), 164. doi: 10.3390/nu11010164 PMID: 30646512
  55. Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr. Drug Targets, 2021, 22(9), 998-1009. doi: 10.2174/18735592MTEx9NTk2y PMID: 33208072
  56. Haraldsdottir, S.; Einarsdottir, H.M.; Smaradottir, A.; Gunnlaugsson, A.; Halfdanarson, T.R. Colorectal cancer - review. Laeknabladid, 2014, 100(2), 75-82. doi: 10.17992/lbl.2014.02.531 PMID: 24639430
  57. Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur. Urol. Oncol., 2021, 4(6), 877-892. doi: 10.1016/j.euo.2021.09.006 PMID: 34716119
  58. Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
  59. Nguyen-Nielsen, M.; Borre, M. Diagnostic and therapeutic strategies for prostate cancer. Semin. Nucl. Med., 2016, 46(6), 484-490. doi: 10.1053/j.semnuclmed.2016.07.002 PMID: 27825428
  60. Wang, Y.A.; Sfakianos, J.; Tewari, A.K.; Cordon-cardo, C.; Kyprianou, N. Molecular tracing of prostate cancer lethality. Oncogene, 2020, 39(50), 7225-7238. doi: 10.1038/s41388-020-01496-5 PMID: 33046797
  61. Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33. doi: 10.1186/s40659-017-0140-9 PMID: 28969709
  62. Kolak, A.; Kamińska, M.; Sygit, K.; Budny, A.; Surdyka, D.; Kukiełka-Budny, B.; Burdan, F. Primary and secondary prevention of breast cancer. Ann. Agric. Environ. Med., 2017, 24(4), 549-553. doi: 10.26444/aaem/75943 PMID: 29284222
  63. Winters, S.; Martin, C.; Murphy, D.; Shokar, N.K. Breast cancer epidemiology, prevention, and screening. Prog. Mol. Biol. Transl. Sci., 2017, 151, 1-32. doi: 10.1016/bs.pmbts.2017.07.002 PMID: 29096890
  64. Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin., 2019, 69(4), 280-304. doi: 10.3322/caac.21559 PMID: 31099893
  65. Sambasivan, S. Epithelial ovarian cancer: Review article. Cancer Treat. Res. Commun., 2022, 33, 100629. doi: 10.1016/j.ctarc.2022.100629 PMID: 36127285
  66. Arnaoutoglou, C.; Dampala, K.; Anthoulakis, C.; Papanikolaou, E.G.; Tentas, I.; Dragoutsos, G.; Machairiotis, N.; Zarogoulidis, P.; Ioannidis, A.; Matthaios, D.; Perdikouri, E.I.; Giannakidis, D.; Sardeli, C.; Petousis, S.; Oikonomou, P.; Nikolaou, C.; Charalampidis, C.; Sapalidis, K. Epithelial ovarian cancer: A five year review. Medicina (Kaunas), 2023, 59(7), 1183. doi: 10.3390/medicina59071183 PMID: 37511995
  67. Shah, S.; Cheung, A.; Kutka, M.; Sheriff, M.; Boussios, S. Epithelial ovarian cancer: Providing evidence of predisposition genes. Int. J. Environ. Res. Public Health, 2022, 19(13), 8113. doi: 10.3390/ijerph19138113 PMID: 35805770
  68. Richardson, D.L.; Eskander, R.N.; O’Malley, D.M. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance. JAMA Oncol., 2023, 9(6), 851-859. doi: 10.1001/jamaoncol.2023.0197 PMID: 37079311
  69. Yan, H.; Bu, P.; Bu, P. Non-coding RNA in cancer. Essays Biochem., 2021, 65(4), 625-639. doi: 10.1042/EBC20200032 PMID: 33860799
  70. Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118. doi: 10.1038/s41580-020-00315-9 PMID: 33353982
  71. Toden, S.; Zumwalt, T.J.; Goel, A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1), 188491. doi: 10.1016/j.bbcan.2020.188491 PMID: 33316377
  72. Ran, Z.; Wu, S.; Ma, Z.; Chen, X.; Liu, J.; Yang, J. Advances in exosome biomarkers for cervical cancer. Cancer Med., 2022, 11(24), 4966-4978. doi: 10.1002/cam4.4828 PMID: 35578572
  73. Krylova, S.V.; Feng, D. The machinery of exosomes: Biogenesis, release, and uptake. Int. J. Mol. Sci., 2023, 24(2), 1337. doi: 10.3390/ijms24021337 PMID: 36674857
  74. Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther., 2020, 5(1), 145. doi: 10.1038/s41392-020-00261-0 PMID: 32759948
  75. Xu, Z.; Chen, Y.; Ma, L.; Chen, Y.; Liu, J.; Guo, Y.; Yu, T.; Zhang, L.; Zhu, L.; Shu, Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol. Ther., 2022, 30(10), 3133-3154. doi: 10.1016/j.ymthe.2022.01.046 PMID: 35405312
  76. Huang, W.; Li, H.; Yu, Q.; Xiao, W.; Wang, D.O. LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J. Exp. Clin. Cancer Res., 2022, 41(1), 100. doi: 10.1186/s13046-022-02319-z PMID: 35292092
  77. Liu, Y.; Shi, M.; He, X.; Cao, Y.; Liu, P.; Li, F.; Zou, S.; Wen, C.; Zhan, Q.; Xu, Z.; Wang, J.; Sun, B.; Shen, B. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J. Hematol. Oncol., 2022, 15(1), 52. doi: 10.1186/s13045-022-01272-w PMID: 35526050

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025