Phytochemicals in the Synthetic Era: A Potential Oncosuppressor against Cancer Stem Cells


如何引用文章

全文:

详细

CSCs (Cancer stem cells) are a subpopulation of transformed cells residing within the tumour that possesses properties of stem cells, like self-renewal and differentiation. Different signalling pathways, epigenetic changes, and interaction with a tumour microenvironment are found to be involved in the maintenance of stemness of CSCs and contribute to chemoresistance. Hence, it is difficult to prevent and control progression completely without considering CSCs as a crucial target. Some phytochemicals target different pathways and gene expression and modulate CSC markers to suppress the stemness properties of cancer cells. Thus, phytochemicals potentially impact CSCs which may be applied in chemo-prevention. This comprehensive review discusses some studied phytochemicals that suppress stemness characters in various cancer types both in vitro and in vivo animal models. However, the chemo-prevention ability of phytochemicals needs to be validated in further subsequent stages of clinical trials.

作者简介

Devangkumar Maru

Department of Biotechnology, Atmiya University

Email: info@benthamscience.net

Anmol Kumar

Department of Biotechnology, Atmiya University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis., 2017, 9(3), 448-451. doi: 10.21037/jtd.2017.02.75 PMID: 28449441
  3. Yu, Z.; Pestell, T.G.; Lisanti, M.P.; Pestell, R.G. Cancer stem cells. Int. J. Biochem. Cell Biol., 2012, 44(12), 2144-2151. doi: 10.1016/j.biocel.2012.08.022 PMID: 22981632
  4. Rossi, F.; Noren, H.; Jove, R.; Beljanski, V.; Grinnemo, K.H. Differences and similarities between cancer and somatic stem cells: Thera-peutic implications. Stem Cell Res. Ther., 2020, 11(1), 489. doi: 10.1186/s13287-020-02018-6 PMID: 33208173
  5. Prieto-Vila, M.; Takahashi, R.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci., 2017, 18(12), 2574. doi: 10.3390/ijms18122574 PMID: 29194401
  6. Chu, D.T.; Nguyen, T.T.; Tien, N.L.B.; Tran, D.K.; Jeong, J.H.; Anh, P.G.; Thanh, V.V.; Truong, D.T.; Dinh, T.C. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells, 2020, 9(3), 563. doi: 10.3390/cells9030563 PMID: 32121074
  7. Liskova, A.; Kubatka, P.; Samec, M.; Zubor, P.; Mlyncek, M.; Bielik, T.; Samuel, S.M.; Zulli, A.; Kwon, T.K.; Büsselberg, D. Dietary phytochemicals targeting cancer stem cells. Molecules, 2019, 24(5), 899. doi: 10.3390/molecules24050899 PMID: 30836718
  8. Peitzsch, C.; Tyutyunnykova, A.; Pantel, K.; Dubrovska, A. Cancer stem cells: The root of tumor recurrence and metastases. Semin. Cancer Biol., 2017, 44, 10-24. doi: 10.1016/j.semcancer.2017.02.011 PMID: 28257956
  9. Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell path-ways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 1-35.
  10. Afify, S.M.; Sanchez Calle, A.; Hassan, G.; Kumon, K.; Nawara, H.M.; Zahra, M.H.; Mansour, H.M.; Khayrani, A.C.; Alam, M.J.; Du, J.; Seno, A.; Iwasaki, Y.; Seno, M. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br. J. Cancer, 2020, 122(9), 1378-1390. doi: 10.1038/s41416-020-0792-z PMID: 32203212
  11. Skvortsov, S.; Debbage, P.; Lukas, P.; Skvortsova, I. Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin. Cancer Biol., 2015, 31, 36-42. doi: 10.1016/j.semcancer.2014.06.002 PMID: 24954010
  12. Doherty, M.; Smigiel, J.; Junk, D.; Jackson, M. Cancer stem cell plasticity drives therapeutic resistance. Cancers, 2016, 8(1), 8. doi: 10.3390/cancers8010008 PMID: 26742077
  13. Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280.
  14. Thapa, R.; Wilson, G.D. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int., 2016, 2016, 2087204. doi: 10.1155/2016/2087204 PMID: 27200096
  15. Mohiuddin, I.S.; Wei, S.J.; Kang, M.H. Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165432. doi: 10.1016/j.bbadis.2019.03.005 PMID: 30904611
  16. Zhang, S.; Xiong, X.; Sun, Y. Functional characterization of SOX2 as an anticancer target. Signal Transduct. Target. Ther., 2020, 5(1), 135. doi: 10.1038/s41392-020-00242-3 PMID: 32728033
  17. Warrier, N.M.; Agarwal, P.; Kumar, P. Emerging importance of survivin in stem cells and cancer: The development of new cancer thera-peutics. Stem Cell Rev. Rep., 2020, 16(5), 828-852. doi: 10.1007/s12015-020-09995-4 PMID: 32691369
  18. Brugnoli, F.; Grassilli, S.; Al-Qassab, Y.; Capitani, S.; Bertagnolo, V. CD133 in breast cancer cells: More than a stem cell marker. J. Oncol., 2019, 2019, 7512632. doi: 10.1155/2019/7512632 PMID: 31636668
  19. Matsika, A.; Srinivasan, B.; Day, C.; Mader, S.A.; Margaret Kiernan, D.; Broomfield, A.; Fu, J.; Hooper, J.D.; Kench, J.G.; Samaratunga, H. Cancer stem cell markers in prostate cancer: An immunohistochemical study of ALDH1, SOX2 and EZH2. Pathology, 2015, 47(7), 622-628. doi: 10.1097/PAT.0000000000000325 PMID: 26517640
  20. Tsunekuni, K.; Konno, M.; Haraguchi, N.; Koseki, J.; Asai, A.; Matsuoka, K.; Kobunai, T.; Takechi, T.; Doki, Y.; Mori, M.; Ishii, H. CD44/CD133-positive colorectal cancer stem cells are sensitive to trifluridine exposure. Sci. Rep., 2019, 9(1), 14861. doi: 10.1038/s41598-019-50968-6 PMID: 31619711
  21. Maiuthed, A.; Chantarawong, W.; Chanvorachote, P. Lung cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Res., 2018, 38(7), 3797-3809. doi: 10.21873/anticanres.12663 PMID: 29970499
  22. Xiao, Y.; Lin, M.; Jiang, X.; Ye, J.; Guo, T.; Shi, Y.; Bian, X. The recent advances on liver cancer stem cells: Biomarkers, separation, and therapy. Anal. Cell. Pathol., 2017, 2017, 5108653. doi: 10.1155/2017/5108653 PMID: 28819584
  23. Wang, X.; Huang, S.; Chen, J.L. Understanding of leukemic stem cells and their clinical implications. Mol. Cancer, 2017, 16(1), 2. doi: 10.1186/s12943-016-0574-7 PMID: 28137304
  24. Xu, H-S.; Qin, X.L.; Zong, H.L.; He, X.G.; Cao, L. Cancer stem cell markers in glioblastoma - an update. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(14), 3207-3211. PMID: 28770964
  25. Ishiwata, T.; Matsuda, Y.; Yoshimura, H.; Sasaki, N.; Ishiwata, S.; Ishikawa, N.; Takubo, K.; Arai, T.; Aida, J. Pancreatic cancer stem cells: Features and detection methods. Pathol. Oncol. Res., 2018, 24(4), 797-805. doi: 10.1007/s12253-018-0420-x PMID: 29948612
  26. Keyvani, V.; Farshchian, M.; Esmaeili, S.A.; Yari, H.; Moghbeli, M.; Nezhad, S.R.K.; Abbaszadegan, M.R. Ovarian cancer stem cells and targeted therapy. J. Ovarian Res., 2019, 12(1), 120. doi: 10.1186/s13048-019-0588-z PMID: 31810474
  27. Cochrane, C.; Szczepny, A.; Watkins, D.; Cain, J. Hedgehog signaling in the maintenance of cancer stem cells. Cancers, 2015, 7(3), 1554-1585. doi: 10.3390/cancers7030851 PMID: 26270676
  28. Justilien, V.; Walsh, M.P.; Ali, S.A.; Thompson, E.A.; Murray, N.R.; Fields, A.P. The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma. Cancer Cell, 2014, 25(2), 139-151. doi: 10.1016/j.ccr.2014.01.008 PMID: 24525231
  29. Abe, Y.; Tanaka, N. The hedgehog signaling networks in lung cancer: The mechanisms and roles in tumor progression and implications for cancer therapy. BioMed Res. Int., 2016, 2016, 7969286. doi: 10.1155/2016/7969286 PMID: 28105432
  30. Mohammed, M.K.; Shao, C.; Wang, J.; Wei, Q.; Wang, X.; Collier, Z.; Tang, S.; Liu, H.; Zhang, F.; Huang, J.; Guo, D.; Lu, M.; Liu, F.; Liu, J.; Ma, C.; Shi, L.L.; Athiviraham, A.; He, T.C.; Lee, M.J. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis., 2016, 3(1), 11-40. doi: 10.1016/j.gendis.2015.12.004 PMID: 27077077
  31. Holland, J.D.; Klaus, A.; Garratt, A.N.; Birchmeier, W. Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol., 2013, 25(2), 254-264. doi: 10.1016/j.ceb.2013.01.004 PMID: 23347562
  32. Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165. doi: 10.1186/s13045-020-00990-3 PMID: 33276800
  33. Xia, P.; Xu, X-Y.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am. J. Cancer Res., 2015, 5(5), 1602-1609. PMID: 26175931
  34. Yoon, C.; Lu, J.; Yi, B.C.; Chang, K.K.; Simon, M.C.; Ryeom, S.; Yoon, S.S. PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis, 2021, 10(1), 12. doi: 10.1038/s41389-020-00300-z PMID: 33468992
  35. Wei, Y.; Jiang, Y.; Zou, F.; Liu, Y.; Wang, S.; Xu, N.; Xu, W.; Cui, C.; Xing, Y.; Liu, Y.; Cao, B.; Liu, C.; Wu, G.; Ao, H.; Zhang, X.; Jiang, J. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc. Natl. Acad. Sci. USA, 2013, 110(17), 6829-6834. doi: 10.1073/pnas.1217002110 PMID: 23569237
  36. Venkatesh, V.; Nataraj, R.; Thangaraj, G.S.; Karthikeyan, M.; Gnanasekaran, A.; Kaginelli, S.B.; Kuppanna, G.; Kallappa, C.G.; Basalin-gappa, K.M. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig., 2018, 5(2), 5. doi: 10.21037/sci.2018.02.02 PMID: 29682512
  37. Meisel, C.T.; Porcheri, C.; Mitsiadis, T.A. Cancer stem cells, Quo Vadis? the notch signaling pathway in tumor initiation and progression. Cells, 2020, 9(8), 1879. doi: 10.3390/cells9081879 PMID: 32796631
  38. Xiao, W.; Gao, Z.; Duan, Y.; Yuan, W.; Ke, Y. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 41. doi: 10.1186/s13046-017-0507-3 PMID: 28279221
  39. Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41(41), 192-208. doi: 10.1016/j.semcancer.2016.09.001 PMID: 27609747
  40. Park, S.Y.; Lee, C.J.; Choi, J.H.; Kim, J.H.; Kim, J.W.; Kim, J.Y.; Nam, J.S. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J. Exp. Clin. Cancer Res., 2019, 38(1), 399. doi: 10.1186/s13046-019-1405-7 PMID: 31511084
  41. Dolatabadi, S.; Jonasson, E.; Lindén, M.; Fereydouni, B.; Bäcksten, K.; Nilsson, M.; Martner, A.; Forootan, A.; Fagman, H.; Landberg, G.; Åman, P.; Ståhlberg, A. JAK-STAT signalling controls cancer stem cell properties including chemotherapy resistance in myxoid liposar-coma. Int. J. Cancer, 2019, 145(2), 435-449. doi: 10.1002/ijc.32123 PMID: 30650179
  42. Ribatti, D.; Tamma, R.; Annese, T. Epithelial-mesenchymal transition in cancer: A historical overview. Transl. Oncol., 2020, 13(6), 100773. doi: 10.1016/j.tranon.2020.100773 PMID: 32334405
  43. Gonzalez, D.M.; Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal., 2014, 7(344), re8. doi: 10.1126/scisignal.2005189 PMID: 25249658
  44. Babaei, G.; Aziz, S.G.G.; Jaghi, N.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed. Pharmacother., 2021, 133, 110909. doi: 10.1016/j.biopha.2020.110909 PMID: 33227701
  45. Chen, S.; Fisher, R.C.; Signs, S.; Molina, L.A.; Shenoy, A.K.; Lopez, M.C.; Baker, H.V.; Koomen, J.M.; Chen, Y.; Gittleman, H. Barn-holtz-Sloan, J.; Berg, A.; Appelman, H.D.; Huang, E.H. Inhibition of PI3K/Akt/mTOR signaling in PI3KR2-overexpressing colon cancer stem cells reduces tumor growth due to apoptosis. Oncotarget, 2017, 8(31), 50476-50488. doi: 10.18632/oncotarget.9919 PMID: 28881576
  46. He, Y.C.; Zhou, F.L.; Shen, Y.; Liao, D.F.; Cao, D. Apoptotic death of cancer stem cells for cancer therapy. Int. J. Mol. Sci., 2014, 15(5), 8335-8351. doi: 10.3390/ijms15058335 PMID: 24823879
  47. Sabnis, N.G.; Miller, A.; Titus, M.A.; Huss, W.J. The efflux transporter ABCG2 maintains prostate stem cells. Mol. Cancer Res., 2017, 15(2), 128-140. doi: 10.1158/1541-7786.MCR-16-0270-T PMID: 27856956
  48. Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer thera-py. Int. J. Mol. Sci., 2017, 18(12), 2589. doi: 10.3390/ijms18122589 PMID: 29194365
  49. Peng, L.; Jiang, D. Resveratrol eliminates cancer stem cells of osteosarcoma by STAT3 pathway inhibition. PLoS One, 2018, 13(10), e0205918. doi: 10.1371/journal.pone.0205918 PMID: 30356255
  50. Shen, Y.A.; Lin, C.H.; Chi, W.H.; Wang, C.Y.; Hsieh, Y.T.; Wei, Y.H.; Chen, Y.J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid. Based Complement. Alternat. Med., 2013, 2013, 590393. doi: 10.1155/2013/590393 PMID: 590393
  51. Pouyafar, A.; Zadi Heydarabad, M.; Aghdam, S.B.; Khaksar, M.; Azimi, A.; Rahbarghazi, R.; Talebi, M. Resveratrol potentially increased the tumoricidal effect of doxorubicin on SKOV3 cancer stem cells in vitro. J. Cell. Biochem., 2019, 120(5), 8430-8437. doi: 10.1002/jcb.28129 PMID: 30609135
  52. Sun, H.; Zhang, T.; Liu, R.; Cao, W.; Zhang, Z.; Liu, Z.; Qian, W.; Wang, D.; Yu, D.; Zhong, C. Resveratrol inhibition of renal cancer stem cell characteristics and modulation of the sonic hedgehog pathway. Nutr. Cancer, 2021, 73(7), 1157-1167. doi: 10.1080/01635581.2020.1784966 PMID: 32586140
  53. Fu, Y.; Chang, H.; Peng, X.; Bai, Q.; Yi, L.; Zhou, Y.; Zhu, J.; Mi, M. Resveratrol inhibits breast cancer stem-like cells and induces au-tophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One, 2014, 9(7), e102535. doi: 10.1371/journal.pone.0102535 PMID: 25068516
  54. Namiki, K.; Wongsirisin, P.; Yokoyama, S.; Sato, M.; Rawangkan, A.; Sakai, R.; Iida, K.; Suganuma, M. (-)-Epigallocatechin gallate inhib-its stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci. Rep., 2020, 10(1), 2444. doi: 10.1038/s41598-020-59281-z PMID: 32051483
  55. Lee, S.H.; Nam, H.J.; Kang, H.J.; Kwon, H.W.; Lim, Y.C. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur. J. Cancer, 2013, 49(15), 3210-3218. doi: 10.1016/j.ejca.2013.06.025 PMID: 23876835
  56. Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C. () Epigallocatechin 3 gallate inhibits bladder cancer stem cells via suppres-sion of sonic hedgehog pathway. Oncol. Rep., 2019, 42(1), 425-435. doi: 10.3892/or.2019.7170 PMID: 31180522
  57. Jiang, P.; Xu, C.; Zhang, P.; Ren, J.; Mageed, F.; Wu, X.; Chen, L.; Zeb, F.; Feng, Q.; Li, S. Epigallocatechin 3 gallate inhibits self renewal ability of lung cancer stem like cells through inhibition of CLOCK. Int. J. Mol. Med., 2020, 46(6), 2216-2224. doi: 10.3892/ijmm.2020.4758 PMID: 33125096
  58. Fujiki, H.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J. Cancer Res. Clin. Oncol., 2017, 143(12), 2401-2412. doi: 10.1007/s00432-017-2515-2 PMID: 28942499
  59. Mineva, N.D.; Paulson, K.E.; Naber, S.P.; Yee, A.S.; Sonenshein, G.E. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One, 2013, 8(9), e73464. doi: 10.1371/journal.pone.0073464 PMID: 24039951
  60. Zhang, L.; Li, L.; Jiao, M.; Wu, D.; Wu, K.; Li, X.; Zhu, G.; Yang, L.; Wang, X.; Hsieh, J.T.; He, D. Genistein inhibits the stemness proper-ties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett., 2012, 323(1), 48-57. doi: 10.1016/j.canlet.2012.03.037 PMID: 22484470
  61. Zhang, Q.; Cao, W.S.; Wang, X.Q.; Zhang, M.; Lu, X.M.; Chen, J.Q.; Chen, Y.; Ge, M.M.; Zhong, C.Y.; Han, H.Y. Genistein inhibits naso-pharyngeal cancer stem cells through sonic hedgehog signaling. Phytother. Res., 2019, 33(10), 2783-2791. doi: 10.1002/ptr.6464 PMID: 31342620
  62. Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential mechanisms of action of curcumin for cancer preven-tion: focus on cellular signaling pathways and miRNAs. Int. J. Biol. Sci., 2019, 15(6), 1200-1214. doi: 10.7150/ijbs.33710 PMID: 31223280
  63. Sordillo, P.P.; Helson, L. Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res., 2015, 35(2), 599-614. PMID: 25667437
  64. Huang, Y.T.; Lin, Y.W.; Chiu, H.M.; Chiang, B.H. Curcumin induces apoptosis of colorectal cancer stem cells by coupling with CD44 marker. J. Agric. Food Chem., 2016, 64(11), 2247-2253. doi: 10.1021/acs.jafc.5b05649 PMID: 26906122
  65. Wang, J.; Wang, C.; Bu, G. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein ki-nase B/mammalian target of rapamycin signaling pathway. Exp. Ther. Med., 2018, 15(4), 3650-3658. doi: 10.3892/etm.2018.5805 PMID: 29545895
  66. Zhou, Q.; Ye, M.; Lu, Y.; Zhang, H.; Chen, Q.; Huang, S.; Su, S. Curcumin improves the tumoricidal effect of mitomycin C by suppress-ing ABCG2 expression in stem cell-like breast cancer cells. PLoS One, 2015, 10(8), e0136694. doi: 10.1371/journal.pone.0136694 PMID: 26305906
  67. Simões, B.M.; Santiago-Gómez, A.; Chiodo, C.; Moreira, T.; Conole, D.; Lovell, S.; Alferez, D.; Eyre, R.; Spence, K.; Sarmiento-Castro, A.; Kohler, B.; Morisset, L.; Lanzino, M.; Andò, S.; Marangoni, E.; Sims, A.H.; Tate, E.W.; Howell, S.J.; Clarke, R.B. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene, 2020, 39(25), 4896-4908. doi: 10.1038/s41388-020-1335-z PMID: 32472077
  68. Ge, M.; Zhang, L.; Cao, L.; Xie, C.; Li, X.; Li, Y.; Meng, Y.; Chen, Y.; Wang, X.; Chen, J.; Zhang, Q.; Shao, J.; Zhong, C. Sulforaphane inhibits gastric cancer stem cells via suppressing sonic hedgehog pathway. Int. J. Food Sci. Nutr., 2019, 70(5), 570-578. doi: 10.1080/09637486.2018.1545012 PMID: 30624124
  69. Castro, N.P.; Rangel, M.C.; Merchant, A.S.; MacKinnon, G.; Cuttitta, F.; Salomon, D.S.; Kim, Y.S. Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. Cancer Prev. Res., 2019, 12(3), 147-158. doi: 10.1158/1940-6207.CAPR-18-0241 PMID: 30679159
  70. Wang, F.; Sun, Y.; Huang, X.; Qiao, C.; Zhang, W.; Liu, P.; Wang, M. Sulforaphane inhibits self-renewal of lung cancer stem cells through the modulation of sonic Hedgehog signaling pathway and polyhomeotic homolog 3. AMB Express, 2021, 11(1), 121. doi: 10.1186/s13568-021-01281-x PMID: 34424425
  71. Yao, C.J.; Lai, G.M.; Yeh, C.T.; Lai, M.T.; Shih, P.H.; Chao, W.J.; Whang-Peng, J.; Chuang, S.E.; Lai, T.Y. Honokiol eliminates human oral cancer stem-like cells accompanied with suppression of Wnt/ β -catenin signaling and apoptosis induction. Evidence-based Complement. Altern. Med., 2013, 2013, 2013.
  72. Sengupta, S.; Nagalingam, A.; Muniraj, N.; Bonner, M.Y.; Mistriotis, P.; Afthinos, A.; Kuppusamy, P.; Lanoue, D.; Cho, S.; Korangath, P.; Shriver, M.; Begum, A.; Merino, V.F.; Huang, C-Y.; Arbiser, J.L.; Matsui, W.; Győrffy, B.; Konstantopoulos, K.; Sukumar, S.; Marignani, P.A.; Saxena, N.K.; Sharma, D. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene, 2017, 36(41), 5709-5721. doi: 10.1038/onc.2017.164 PMID: 28581518
  73. Ashry, R.; Elhussiny, M.; Abdellatif, H.; Elkashty, O.; Abdel-Ghaffar, H.A.; Gaballa, E.T.; Mousa, S.A. Genetic interpretation of the im-pacts of honokiol and EGCG on apoptotic and self-renewal pathways in HEp-2 human laryngeal CD44high cancer stem cells. Nutr. Cancer, 2022, 74(6), 2152-2173. PMID: 34590505
  74. Huang, J.S.; Yao, C.J.; Chuang, S.E.; Yeh, C.T.; Lee, L.M.; Chen, R.M.; Chao, W.J.; Whang-Peng, J.; Lai, G.M. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer, 2016, 16(1), 245. doi: 10.1186/s12885-016-2265-6 PMID: 27012679
  75. Ma, Y.; Yu, W.; Shrivastava, A.; Srivastava, R.K.; Shankar, S. Inhibition of pancreatic cancer stem cell characteristics by α‐Mangostin: Molecular mechanisms involving sonic hedgehog and Nanog. J. Cell. Mol. Med., 2019, 23(4), 2719-2730. doi: 10.1111/jcmm.14178 PMID: 30712329
  76. Chien, H.J.; Ying, T.H.; Hsieh, S.C.; Lin, C.L.; Yu, Y.L.; Kao, S.H.; Hsieh, Y.H. α‐Mangostin attenuates stemness and enhances cisplatin‐induced cell death in cervical cancer stem‐like cells through induction of mitochondrial‐mediated apoptosis. J. Cell. Physiol., 2020, 235(7-8), 5590-5601. doi: 10.1002/jcp.29489 PMID: 31960449
  77. Verma, R.K.; Yu, W.; Shrivastava, A.; Shankar, S.; Srivastava, R.K. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice. Sci. Rep., 2016, 6(1), 32743. doi: 10.1038/srep32743 PMID: 27624879
  78. Li, Y.W.; Xu, J.; Zhu, G.Y.; Huang, Z.J.; Lu, Y.; Li, X.Q.; Wang, N.; Zhang, F.X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov., 2018, 4(1), 105. doi: 10.1038/s41420-018-0124-8 PMID: 30479839
  79. Erdogan, S.; Turkekul, K.; Serttas, R.; Erdogan, Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed. Pharmacother., 2017, 88, 210-217. doi: 10.1016/j.biopha.2017.01.056 PMID: 28107698
  80. Kim, B.; Jung, N.; Lee, S.; Sohng, J.K.; Jung, H.J. Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via sup-pression of c-met signaling. Phytother. Res., 2016, 30(11), 1833-1840. doi: 10.1002/ptr.5689 PMID: 27468969
  81. Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Serttas, R.; Turkekul, K.; Dibirdik, I.; Bilir, A. The flavonoid apigenin reduces prostate cancer CD44+ stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sci., 2016, 162, 77-86. doi: 10.1016/j.lfs.2016.08.019 PMID: 27569589
  82. Kim, S.H.; Singh, S.V. Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of can-cer stem cells. Cancer Prev. Res., 2014, 7(7), 738-747. doi: 10.1158/1940-6207.CAPR-13-0445 PMID: 24824039
  83. Wu, C.H.; Hong, B.H.; Ho, C.T.; Yen, G.C. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J. Agric. Food Chem., 2015, 63(9), 2432-2441. doi: 10.1021/acs.jafc.5b00002 PMID: 25686711
  84. Liao, K.; Xia, B.; Zhuang, Q.Y.; Hou, M.J.; Zhang, Y.J.; Luo, B.; Qiu, Y.; Gao, Y.F.; Li, X.J.; Chen, H.F.; Ling, W.H.; He, C.Y.; Huang, Y.J.; Lin, Y.C.; Lin, Z.N. Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-κB/COX-2 pathway. Theranostics, 2015, 5(3), 302-321. doi: 10.7150/thno.8387 PMID: 25553117
  85. Soltanian, S.; Riahirad, H.; Pabarja, A.; Jafari, E.; Khandani, B.K. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru, 2018, 26(1), 19-29. doi: 10.1007/s40199-018-0210-8 PMID: 30209760
  86. Zhen, X.; Choi, H.S.; Kim, J.H.; Kim, S.L.; Liu, R.; Yun, B.S.; Lee, D.S. Machilin D, a lignin derived from Saururus chinensis, suppresses breast cancer stem cells and inhibits NF-κB signaling. Biomolecules, 2020, 10(2), 245. doi: 10.3390/biom10020245 PMID: 32033472
  87. Jiang, F.; Li, Y.; Mu, J.; Hu, C.; Zhou, M.; Wang, X.; Si, L.; Ning, S.; Li, Z. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: An epigenetic regulation of miR-148a/SMAd2 signaling. Mol. Carcinog., 2016, 55(5), 929-940. doi: 10.1002/mc.22333 PMID: 25980823
  88. Su, Y.; Huang, W.C.; Lee, W.H.; Bamodu, O.A.; Zucha, M.A.; Astuti, I.; Suwito, H.; Yeh, C.T.; Lin, C.M. Methoxyphenyl chalcone sensi-tizes aggressive epithelial cancer to cisplatin through apoptosis induction and cancer stem cell eradication. Tumour Biol., 2017, 39(5), 1010428317691689. doi: 10.1177/1010428317691689 PMID: 28466786
  89. Tiwari, A.; Modi, S.J.; Gabhe, S.Y.; Kulkarni, V.M. Evaluation of piperine against cancer stem cells (CSCs) of hepatocellular carcinoma: Insights into epithelial-mesenchymal transition (EMT). Bioorg. Chem., 2021, 110, 104776. doi: 10.1016/j.bioorg.2021.104776 PMID: 33743225
  90. Choi, H.; Kim, S.L.; Kim, J.H.; Deng, H.Y.; Yun, B.S.; Lee, D.S. Triterpene acid (3-O-p-coumaroyltormentic acid) isolated from aronia extracts inhibits breast cancer stem cell formation through downregulation of c-Myc protein. Int. J. Mol. Sci., 2018, 19(9), 2528. doi: 10.3390/ijms19092528 PMID: 30149665
  91. Wang, W.; Zhao, C.; Jou, D.; Lü, J.; Zhang, C.; Lin, L.; Lin, J. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res., 2013, 33(10), 4279-4284. PMID: 24122993
  92. Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Manna, A.; Saha, S.; Khan, P.; Bhattacharjee, P.; Guha, D.; Adhikary, A.; Mukhjerjee, S.; Das, T. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res. Ther., 2014, 5(5), 116. doi: 10.1186/scrt506 PMID: 25315241
  93. Chen, W.; Li, L.; Zhang, X.; Liang, Y.; Pu, Z.; Wang, L.; Mo, J. Curcumin: A calixarene derivative micelle potentiates anti-breast cancer stem cells effects in xenografted, triple-negative breast cancer mouse models. Drug Deliv., 2017, 24(1), 1470-1481. doi: 10.1080/10717544.2017.1381198 PMID: 28956452
  94. Fan, P.; Fan, S.; Wang, H.; Mao, J.; Shi, Y.; Ibrahim, M.M.; Ma, W.; Yu, X.; Hou, Z.; Wang, B.; Li, L. Genistein decreases the breast can-cer stem-like cell population through hedgehog pathway. Stem Cell Res. Ther., 2013, 4(6), 146. doi: 10.1186/scrt357 PMID: 24331293
  95. Huang, W.; Wan, C.; Luo, Q.; Huang, Z.; Luo, Q. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int. J. Mol. Sci., 2014, 15(3), 3432-3443. doi: 10.3390/ijms15033432 PMID: 24573253
  96. Sato, A.; Okada, M.; Shibuya, K.; Watanabe, E.; Seino, S.; Suzuki, K.; Narita, Y.; Shibui, S.; Kayama, T.; Kitanaka, C. Resveratrol pro-motes proteasome-dependent degradation of Nanog via p53 activation and induces differentiation of glioma stem cells. Stem Cell Res., 2013, 11(1), 601-610. doi: 10.1016/j.scr.2013.04.004 PMID: 23651583
  97. Qin, T.; Cheng, L.; Xiao, Y.; Qian, W.; Li, J.; Wu, Z.; Wang, Z.; Xu, Q.; Duan, W.; Wong, L.; Wu, E.; Ma, Q.; Ma, J. NAF-1 inhibition by resveratrol suppresses cancer stem cell-like properties and the invasion of pancreatic cancer. Front. Oncol., 2020, 10, 1038. doi: 10.3389/fonc.2020.01038 PMID: 32766132
  98. Wang, W.J.; Sui, H.; Qi, C.; Li, Q.; Zhang, J.; Wu, S.F.; Mei, M.Z.; Lu, Y.Y.; Wan, Y.T.; Chang, H.; Guo, P.T. Ursolic acid inhibits prolif-eration and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hy-poxia-inducible factor-1α in vitro. Oncol. Rep., 2016, 36(1), 428-440. doi: 10.3892/or.2016.4813 PMID: 27221674
  99. Aliebrahimi, S.; Kouhsari, S.M.; Arab, S.S.; Shadboorestan, A.; Ostad, S.N. Phytochemicals, withaferin A and carnosol, overcome pancre-atic cancer stem cells as c-Met inhibitors. Biomed. Pharmacother., 2018, 106, 1527-1536. doi: 10.1016/j.biopha.2018.07.055 PMID: 30119228

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2023