Recent Progresses in Chalcone Derivatives as Potential Anticancer Agents


如何引用文章

全文:

详细

Chalcones are members of the flavonoid family and act as intermediates in the biosynthesis of flavonoids, which are widespread in plants. Meanwhile, chalcones are important precursors for synthetic manipulations and act as mediators in the synthesis of useful therapeutic compounds, which have demonstrated a wide range of biological activities. Numerous studies have reported the synthesis and medicinal significance of chalcone derivatives. Cancer is one of the major causes of death worldwide. Although various therapies have been proposed for diverse types of cancer, their associated limitations and side effects urged researchers to develop more safe, potent and selective anticancer agents. Based on the literature review, the presence of chalcone derivatives as the main component, a substituent, or a side-chain in different biologically active compounds could serve as a reliable platform for synthetic organic chemists to synthesize new compounds bearing this moiety, owing to their similar or superior activities compared to those of the standards. The diversity of the chalcone family also lends itself to broad-spectrum biological applications in oncology. This review, therefore, sheds light on the latest structure and the anticancer potency of different synthetics (bearing other anticancer pharmacophores based on simple, functional groups, and dimer chalcone derivatives) and natural chalcone hybrids. It is confirmed that the information compiled in this review article, many chalcone hybrids have been found with promising anticancer activities. Therefore, this review may be convenient for designing novel chalcone molecules with enhanced medicinal properties according to the structure of the compounds.

作者简介

Jiahui Yang

School of Pharmaceutical Sciences, Hebei Medical University

Email: info@benthamscience.net

Jianmei Lv

School of Pharmaceutical Sciences, Hebei Medical University

Email: info@benthamscience.net

Shuxian Cheng

School of Pharmaceutical Sciences, Hebei Medical University

Email: info@benthamscience.net

Tingyu Jing

School of Pharmaceutical Sciences, Hebei Medical University

Email: info@benthamscience.net

Tenghao Meng

School of Pharmaceutical Sciences, Hebei Medical University

Email: info@benthamscience.net

Dezhen Huo

School of Pharmaceutical Sciences, Hebei Medical University

Email: info@benthamscience.net

Xin Ma

School of Pharmaceutical Sciences, Hebei Medical University

Email: info@benthamscience.net

Ran Wen

School of Pharmaceutical Sciences, Hebei Medical University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Di Carlo, G.; Mascolo, N.; Izzo, A.A.; Capasso, F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci., 1999, 65(4), 337-353. doi: 10.1016/S0024-3205(99)00120-4 PMID: 10421421
  2. Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: A review. Res. Chem. Intermed., 2017, 43(11), 6043-6077. doi: 10.1007/s11164-017-2977-5
  3. Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777. doi: 10.1016/j.ejmech.2014.08.033 PMID: 25137491
  4. Wang, M.; Xu, S.; Wu, C.; Liu, X.; Tao, H.; Huang, Y.; Liu, Y.; Zheng, P.; Zhu, W. Design, synthesis and activity of novel sorafenib ana-logues bearing chalcone unit. Bioorg. Med. Chem. Lett., 2016, 26(22), 5450-5454. doi: 10.1016/j.bmcl.2016.10.029 PMID: 27777009
  5. Romagnoli, R.; Prencipe, F.; Lopez-Cara, L.C.; Oliva, P.; Baraldi, S.; Baraldi, P.G.; Estévez-Sarmiento, F.; Quintana, J.; Estévez, F. Synthe-sis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 727-742. doi: 10.1080/14756366.2018.1450749 PMID: 29620429
  6. Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075. doi: 10.1016/j.bmc.2016.12.019 PMID: 28038941
  7. Mokale, S.N.; Begum, A.; Sakle, N.S.; Shelke, V.R.; Bhavale, S.A. Design, synthesis and anticancer screening of 3-(3-(substituted phenyl) acryloyl)-2H-chromen-2ones as selective anti-breast cancer agent. Biomed. Pharmacother., 2017, 89, 966-972. doi: 10.1016/j.biopha.2017.02.089 PMID: 28292025
  8. Ayati, A.; Oghabi Bakhshaiesh, T.; Moghimi, S.; Esmaeili, R.; Majidzadeh-A, K.; Safavi, M.; Firoozpour, L.; Emami, S.; Foroumadi, A. Synthesis and biological evaluation of new coumarins bearing 2,4-diaminothiazole-5-carbonyl moiety. Eur. J. Med. Chem., 2018, 155, 483-491. doi: 10.1016/j.ejmech.2018.06.015 PMID: 29908441
  9. Wang, Y.; Zhang, W.; Dong, J.; Gao, J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Chem., 2020, 95, 103530. doi: 10.1016/j.bioorg.2019.103530 PMID: 31887477
  10. Sathish Kumar, K.; Kotra, V.; Praveena Devi, C.B.; Anusha, N.; Hari, Babu B.; Adil, S.F.; Shaik, M.R.; Khan, M.; Al-Warthan, A.; Al-duhaish, O.; Mujahid Alam, M. ZnCl2 catalyzed new coumarinyl-chalcones as cytotoxic agents. Saudi J. Biol. Sci., 2021, 28(1), 386-394. doi: 10.1016/j.sjbs.2020.10.020 PMID: 33424321
  11. Tawfik, H.O.; Shaldam, M.A.; Nocentini, A.; Salem, R.; Almahli, H.; Al-Rashood, S.T.; Supuran, C.T.; Eldehna, W.M. Novel 3-(6-methylpyridin-2-yl)coumarin-based chalcones as selective inhibitors of cancer-related carbonic anhydrases IX and XII endowed with an-ti-proliferative activity. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1043-1052. doi: 10.1080/14756366.2022.2056734 PMID: 35437108
  12. Ayati, A.; Esmaeili, R.; Moghimi, S.; Oghabi Bakhshaiesh, T.; Eslami-S, Z.; Majidzadeh-A, K.; Safavi, M.; Emami, S.; Foroumadi, A. Syn-thesis and biological evaluation of 4-amino-5-cinnamoylthiazoles as chalcone-like anticancer agents. Eur. J. Med. Chem., 2018, 145, 404-412. doi: 10.1016/j.ejmech.2018.01.015 PMID: 29335206
  13. Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: Synthesis, docking study and anticancer activity. Bioorg. Chem., 2020, 98, 103761. doi: 10.1016/j.bioorg.2020.103761 PMID: 32200332
  14. Lamie, P.F.; Philoppes, J.N. 2-Thiopyrimidine/chalcone hybrids: Design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 864-879. doi: 10.1080/14756366.2020.1740922 PMID: 32208772
  15. Kasetti, A.B.; Singhvi, I.; Nagasuri, R.; Bhandare, R.R.; Shaik, A.B. Thiazole–chalcone hybrids as prospective antitubercular and antipro-liferative agents: Design, synthesis, biological, molecular docking studies and in silico ADME evaluation. Molecules, 2021, 26(10), 2847. doi: 10.3390/molecules26102847 PMID: 34064806
  16. Shaik, A.B.; Rao, G.K.; Kumar, G.B.; Patel, N.; Reddy, V.S.; Khan, I.; Routhu, S.R.; Kumar, C.G.; Veena, I.; Chandra Shekar, K.; Barkume, M.; Jadhav, S.; Juvekar, A.; Kode, J.; Pal-Bhadra, M.; Kamal, A. Design, synthesis and biological evaluation of novel pyra-zolochalcones as potential modulators of PI3K/Akt/mTOR pathway and inducers of apoptosis in breast cancer cells. Eur. J. Med. Chem., 2017, 139, 305-324. doi: 10.1016/j.ejmech.2017.07.056 PMID: 28803046
  17. Khan, I.; Garikapati, K.R.; Setti, A.; Shaik, A.B.; Kanth Makani, V.K.; Shareef, M.A.; Rajpurohit, H.; Vangara, N.; Pal-Bhadra, M.; Kamal, A.; Kumar, C.G. Design, synthesis, in silico pharmacokinetics prediction and biological evaluation of 1,4-dihydroindeno1,2-cpyrazole chalcone as EGFR/Akt pathway inhibitors. Eur. J. Med. Chem., 2019, 163, 636-648. doi: 10.1016/j.ejmech.2018.12.011 PMID: 30562699
  18. Tok, F.; İrem Abas, B.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis and biological evaluation of some new 2-Pyrazoline de-rivatives as potential anticancer agents. Bioorg. Chem., 2020, 102, 104063. doi: 10.1016/j.bioorg.2020.104063 PMID: 32663669
  19. Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo1,5-apyrimidines as potential anticancer agents. MedChemComm, 2017, 8(9), 1810-1816. doi: 10.1039/C7MD00193B PMID: 30108891
  20. Hsieh, C.Y.; Ko, P.W.; Chang, Y.J.; Kapoor, M.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Hsu, M.H. Design and synthesis of Benzimidazole-Chalcone derivatives as potential anticancer agents. Molecules, 2019, 24(18), 3259. doi: 10.3390/molecules24183259 PMID: 31500191
  21. Yang, J.L.; Ma, Y.H.; Li, Y.H.; Zhang, Y.P.; Tian, H.C.; Huang, Y.C.; Li, Y.; Chen, W.; Yang, L.J. Design, synthesis, and anticancer activi-ty of novel trimethoxyphenyl-derived chalcone-benzimidazolium salts. ACS Omega, 2019, 4(23), 20381-20393. doi: 10.1021/acsomega.9b03077 PMID: 31815242
  22. Rahimzadeh Oskuei, S.; Mirzaei, S.; Reza Jafari-Nik, M.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Design, synthesis and biolog-ical evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2021, 112, 104904. doi: 10.1016/j.bioorg.2021.104904 PMID: 33933802
  23. Özdemir, A.; Altıntop, M.D.; Sever, B.; Gençer, H.K.; Kapkaç, H.A.; Atlı, Ö.; Baysal, M. A new series of pyrrole-based chalcones: Syn-thesis and evaluation of antimicrobial activity, cytotoxicity, and genotoxicity. Molecules, 2017, 22(12), 2112. doi: 10.3390/molecules22122112 PMID: 29189730
  24. Gul, H.I.; Tugrak, M.; Gul, M.; Mazlumoglu, S.; Sakagami, H.; Gulcin, I.; Supuran, C.T. New phenolic Mannich bases with piperazines and their bioactivities. Bioorg. Chem., 2019, 90, 103057. doi: 10.1016/j.bioorg.2019.103057 PMID: 31226471
  25. Tugrak, M.; Gul, H.I.; Bandow, K.; Sakagami, H.; Gulcin, I.; Ozkay, Y.; Supuran, C.T. Synthesis and biological evaluation of some new mono Mannich bases with piperazines as possible anticancer agents and carbonic anhydrase inhibitors. Bioorg. Chem., 2019, 90, 103095. doi: 10.1016/j.bioorg.2019.103095 PMID: 31288135
  26. Li, Y.; Sun, Y.; Zhou, Y.; Li, X.; Zhang, H.; Zhang, G. Discovery of orally active chalcones as histone lysine specific demethylase 1 in-hibitors for the treatment of leukaemia. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 207-217. doi: 10.1080/14756366.2020.1852556 PMID: 33307878
  27. Chen, J.; Kang, C.Y.; Niu, Z.X.; Zhou, H.C.; Yang, H.M. A chalcone inhibits the growth and metastasis of KYSE-4 esophageal cancer cells. J. Int. Med. Res., 2020, 48(6), 0300060520928831. doi: 10.1177/0300060520928831 PMID: 32588681
  28. Wang, G.; Qiu, J.; Xiao, X.; Cao, A.; Zhou, F. Synthesis, biological evaluation and molecular docking studies of a new series of chalcones containing naphthalene moiety as anticancer agents. Bioorg. Chem., 2018, 76, 249-257. doi: 10.1016/j.bioorg.2017.11.017 PMID: 29197743
  29. Wang, G.; Peng, Z.; Li, Y. Synthesis, anticancer activity and molecular modeling studies of novel chalcone derivatives containing indole and naphthalene moieties as tubulin polymerization inhibitors. Chem. Pharm. Bull., 2019, 67(7), 725-728. doi: 10.1248/cpb.c19-00217 PMID: 30982797
  30. Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340. doi: 10.1016/j.bioorg.2018.03.028 PMID: 29627654
  31. Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 139-144. doi: 10.1080/14756366.2019.1690479 PMID: 31724435
  32. Lim, Y.H.; Oo, C.W.; Koh, R.Y.; Voon, G.L.; Yew, M.Y.; Yam, M.F.; Loh, Y.C. Synthesis, characterization, and anti‐cancer activity of new chalcone derivatives containing naphthalene and fluorine moieties. Drug Dev. Res., 2020, 81(8), 994-1003. doi: 10.1002/ddr.21715 PMID: 32720715
  33. Guruswamy, D.K.M.; Balaji, K.D.S.; Dharmappa, K.K.; Jayarama, S. Novel 3-(3,5-difluoro-4-hydroxyphenyl)-1-(naphthalen-2-yl) prop-2-en-1-one as a potent inhibitor of MAP-kinase in HeLa cell lines and anti-angiogenic activity is mediated by HIF-1α in EAC animal mod-el. Oncotarget, 2020, 11(50), 4661-4676. doi: 10.18632/oncotarget.27836 PMID: 33400732
  34. Seba, V.; Silva, G.; Santos, M.; Baek, S.; França, S.; Fachin, A.; Regasini, L.; Marins, M. Chalcone derivatives 4′-amino-1-naphthyl-chalcone (D14) and 4′-amino-4-methyl-1-naphthyl-chalcone (D15) suppress migration and invasion of osteosarcoma cells mediated by p53 regulating EMT-Related genes. Int. J. Mol. Sci., 2018, 19(9), 2838. doi: 10.3390/ijms19092838 PMID: 30235848
  35. Schmitt, F.; Draut, H.; Biersack, B.; Schobert, R. Halogenated naphthochalcones and structurally related naphthopyrazolines with anti-tumor activity. Bioorg. Med. Chem. Lett., 2016, 26(21), 5168-5171. doi: 10.1016/j.bmcl.2016.09.076 PMID: 27727127
  36. Badria, F.A.; Soliman, S.M.; Atef, S.; Islam, M.S.; Al-Majid, A.M.; Dege, N.; Ghabbour, H.A.; Ali, M.; El-Senduny, F.F.; Barakat, A. Anti-cancer indole-based chalcones: A structural and theoretical analysis. Molecules, 2019, 24(20), 3728. doi: 10.3390/molecules24203728 PMID: 31623155
  37. Cong, H.; Zhao, X.; Castle, B.T.; Pomeroy, E.J.; Zhou, B.; Lee, J.; Wang, Y.; Bian, T.; Miao, Z.; Zhang, W.; Sham, Y.Y.; Odde, D.J.; Eck-feldt, C.E.; Xing, C.; Zhuang, C. An indole–chalcone inhibits multidrug-resistant cancer cell growth by targeting microtubules. Mol. Pharm., 2018, 15(9), 3892-3900. doi: 10.1021/acs.molpharmaceut.8b00359 PMID: 30048137
  38. Kode, J.; Kovvuri, J.; Nagaraju, B.; Jadhav, S.; Barkume, M.; Sen, S.; Kasinathan, N.K.; Chaudhari, P.; Mohanty, B.S.; Gour, J.; Sigalapalli, D.K.; Ganesh Kumar, C.; Pradhan, T.; Banerjee, M.; Kamal, A. Synthesis, biological evaluation, and molecular docking analysis of phen-statin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 105, 104447. doi: 10.1016/j.bioorg.2020.104447 PMID: 33207276
  39. Kuruc, T.; Kello, M.; Petrova, K.; Kudlickova, Z.; Kubatka, P.; Mojzis, J. The newly synthetized chalcone L1 is involved in the cell growth inhibition, Induction of apoptosis and suppression of epithelial-to-mesenchymal transition of hela cells. Molecules, 2021, 26(5), 1356. doi: 10.3390/molecules26051356 PMID: 33802621
  40. Yadav, S.K.; Yadav, R.K.; Yadava, U. Computational investigations and molecular dynamics simulations envisioned for potent antioxi-dant and anticancer drugs using indole-chalcone-triazole hybrids. DNA Repair, 2020, 86, 102765. doi: 10.1016/j.dnarep.2019.102765 PMID: 31846836
  41. Mirzaei, H.; Shokrzadeh, M.; Modanloo, M.; Ziar, A.; Riazi, G.H.; Emami, S. New indole-based chalconoids as tubulin-targeting antipro-liferative agents. Bioorg. Chem., 2017, 75, 86-98. doi: 10.1016/j.bioorg.2017.09.005 PMID: 28922629
  42. Gupta, S.; Maurya, P.; Upadhyay, A.; Kushwaha, P.; Krishna, S.; Siddiqi, M.I.; Sashidhara, K.V.; Banerjee, D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur. J. Med. Chem., 2018, 143, 1981-1996. doi: 10.1016/j.ejmech.2017.11.015 PMID: 29146133
  43. Wang, Y.; Hedblom, A.; Koerner, S.K.; Li, M.; Jernigan, F.E.; Wegiel, B.; Sun, L. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation. Bioorg. Med. Chem. Lett., 2016, 26(23), 5703-5706. doi: 10.1016/j.bmcl.2016.10.063 PMID: 27810244
  44. Yan, J.; Xu, Y.; Jin, X.; Zhang, Q.; Ouyang, F.; Han, L.; Zhan, M.; Li, X.; Liang, B.; Huang, X. Structure modification and biological evalu-ation of indole-chalcone derivatives as anti-tumor agents through dual targeting tubulin and TrxR. Eur. J. Med. Chem., 2022, 227, 113897. doi: 10.1016/j.ejmech.2021.113897 PMID: 34649064
  45. Huang, X.; Liu, Z.; Wang, M.; Yin, X.; Wang, Y.; Dai, L.; Wang, H. Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorg. Chem., 2020, 105, 104430. doi: 10.1016/j.bioorg.2020.104430
  46. Huang, X.; Huang, R.; Wang, Z.; Li, L.; Gou, S.; Liao, Z.; Wang, H. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur. J. Med. Chem., 2018, 146, 435-450. doi: 10.1016/j.ejmech.2018.01.075 PMID: 29407969
  47. Huang, X.; Hua, S.; Huang, R.; Liu, Z.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Dual-targeting antitumor hybrids derived from Pt(IV) species and millepachine analogues. Eur. J. Med. Chem., 2018, 148, 1-25. doi: 10.1016/j.ejmech.2018.02.012 PMID: 29448138
  48. Podolski-Renić, A.; Bősze, S.; Dinić, J.; Kocsis, L.; Hudecz, F.; Csámpai, A.; Pešić, M. Ferrocene-cinchona hybrids with triazolyl-chalcone linkers act as pro-oxidants and sensitize human cancer cell lines to paclitaxel. Metallomics, 2017, 9(8), 1132-1141. doi: 10.1039/C7MT00183E PMID: 28737782
  49. Yadav, P.; Lal, K.; Kumar, A.; Guru, S.K.; Jaglan, S.; Bhushan, S. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur. J. Med. Chem., 2017, 126, 944-953. doi: 10.1016/j.ejmech.2016.11.030 PMID: 28011424
  50. Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing Triazolo4,3-a-quinoxaline moieties as potent anticancer agents with dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects. Molecules, 2017, 23(1), 48. doi: 10.3390/molecules23010048 PMID: 29280968
  51. Manna, T.; Pal, K.; Jana, K.; Misra, A.K. Anti-cancer potential of novel glycosylated 1,4-substituted triazolylchalcone derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19), 126615. doi: 10.1016/j.bmcl.2019.08.019 PMID: 31447083
  52. Mohammed, H.H.H.; Abd El-Hafeez, A.A.; Ebeid, K.; Mekkawy, A.I.; Abourehab, M.A.S.; Wafa, E.I.; Alhaj-Suliman, S.O.; Salem, A.K.; Ghosh, P.; Abuo-Rahma, G.E.D.A.; Hayallah, A.M.; Abbas, S.H. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I & II and tubulin polymerization. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1346-1363. doi: 10.1080/14756366.2022.2072308 PMID: 35548854
  53. Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinolone-based 4,5-dihydro-1 H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254. doi: 10.1016/j.ejmech.2017.03.016 PMID: 28329730
  54. Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules, 2021, 26(16), 4899. doi: 10.3390/molecules26164899 PMID: 34443487
  55. Nassan, M.A.; Aldhahrani, A.; Amer, H.H.; Elhenawy, A.; Swelum, A.A.; Ali, O.M.; Zaki, Y.H. Investigation of the anticancer effect of α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one on the DMBA model of breast cancer in albino rats with in silico prediction of their thymidylate synthase inhibitory effect. Molecules, 2022, 27(3), 756. doi: 10.3390/molecules27030756 PMID: 35164019
  56. Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279. doi: 10.1016/j.jsps.2016.06.005 PMID: 28344479
  57. Han, X.; Peng, B.; Xiao, B.B.; Sheng-Li, Cao Yang, C.R.; Wang, W.Z.; Wang, F.C.; Li, H.Y.; Yuan, X.L.; Shi, R.; Liao, J.; Wang, H.; Li, J.; Xu, X. Synthesis and evaluation of chalcone analogues containing a 4-oxoquinazolin-2-yl group as potential anti-tumor agents. Eur. J. Med. Chem., 2019, 162, 586-601. doi: 10.1016/j.ejmech.2018.11.034 PMID: 30472605
  58. Desai, V.; Desai, S.; Gaonkar, S.N.; Palyekar, U.; Joshi, S.D.; Dixit, S.K. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP re-ductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem. Lett., 2017, 27(10), 2174-2180. doi: 10.1016/j.bmcl.2017.03.059 PMID: 28372908
  59. Lindamulage, I.K.; Vu, H.Y.; Karthikeyan, C.; Knockleby, J.; Lee, Y.F.; Trivedi, P.; Lee, H. Novel quinolone chalcones targeting colchi-cine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci. Rep., 2017, 7(1), 10298. doi: 10.1038/s41598-017-10972-0 PMID: 28860494
  60. Peña-Solórzano, D.; Scholler, M.; Bernhardt, G.; Buschauer, A.; König, B.; Ochoa-Puentes, C. Tariquidar-related chalcones and ketones as ABCG2 modulators. ACS Med. Chem. Lett., 2018, 9(8), 854-859. doi: 10.1021/acsmedchemlett.8b00289 PMID: 30128080
  61. Ramya, P.V.S.; Angapelly, S.; Angeli, A.; Digwal, C.S.; Arifuddin, M.; Babu, B.N.; Supuran, C.T.; Kamal, A. Discovery of curcumin in-spired sulfonamide derivatives as a new class of carbonic anhydrase isoforms I, II, IX, and XII inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1274-1281. doi: 10.1080/14756366.2017.1380638 PMID: 28965419
  62. Pesaran Seiied Bonakdar, A.; Vafaei, F.; Farokhpour, M.; Nasr Esfahani, M.H.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16(2), 565-568. doi: 10.22037/ijpr.2017.2036 PMID: 28979310
  63. Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids ex-hibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60. doi: 10.1016/j.ejmech.2019.05.013 PMID: 31096118
  64. Coskun, D.; Erkisa, M.; Ulukaya, E.; Coskun, M.F.; Ari, F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Syn-thesis, characterization and anticancer activity. Eur. J. Med. Chem., 2017, 136, 212-222. doi: 10.1016/j.ejmech.2017.05.017 PMID: 28494257
  65. Gaur, R.; Pathania, A.S.; Malik, F.A.; Bhakuni, R.S.; Verma, R.K. Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity. Eur. J. Med. Chem., 2016, 122, 232-246. doi: 10.1016/j.ejmech.2016.06.035 PMID: 27371926
  66. Grigoropoulou, S.; Manou, D.; Antoniou, A.I.; Tsirogianni, A.; Siciliano, C.; Theocharis, A.D.; Athanassopoulos, C.M. Synthesis and antiproliferative activity of novel dehydroabietic acid-chalcone hybrids. Molecules, 2022, 27(11), 3623. doi: 10.3390/molecules27113623 PMID: 35684559
  67. Gan, F.F.; Zhang, R.; Ng, H.L.; Karuppasamy, M.; Seah, W.; Yeap, W.H.; Ong, S.M.; Hadadi, E.; Wong, S.C.; Chui, W.K.; Chew, E.H. Novel dual-targeting anti-proliferative dihydrotriazine-chalcone derivatives display suppression of cancer cell invasion and inflammation by inhibiting the NF-κB signaling pathway. Food Chem. Toxicol., 2018, 116(Pt B), 238-248. doi: 10.1016/j.fct.2018.04.003 PMID: 29630947
  68. Pérès, B.; Nasr, R.; Zarioh, M.; Lecerf-Schmidt, F.; Di Pietro, A.; Baubichon-Cortay, H.; Boumendjel, A. Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity. Eur. J. Med. Chem., 2017, 130, 346-353. doi: 10.1016/j.ejmech.2017.02.064 PMID: 28273561
  69. Tang, K.W.; Ke, C.C.; Tseng, C.H.; Chen, Y.L.; Tzeng, C.C.; Chen, Y.J.; Hsu, C.C.; Tai, H.T.; Hsieh, Y.J. Enhancement of anticancer po-tential of pterostilbene derivative by chalcone hybridization. Molecules, 2021, 26(16), 4840. doi: 10.3390/molecules26164840 PMID: 34443427
  70. Park, S.; Kim, E.H.; Kim, J.; Kim, S.H.; Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem., 2018, 144, 435-443. doi: 10.1016/j.ejmech.2017.12.056 PMID: 29288944
  71. Li, P.H.; Jiang, H.; Zhang, W.J.; Li, Y.L.; Zhao, M.C.; Zhou, W.; Zhang, L.Y.; Tang, Y.D.; Dong, C.Z.; Huang, Z.S.; Chen, H.X.; Du, Z.Y. Synthesis of carbazole derivatives containing chalcone analogs as non-intercalative topoisomerase II catalytic inhibitors and apoptosis in-ducers. Eur. J. Med. Chem., 2018, 145, 498-510. doi: 10.1016/j.ejmech.2018.01.010 PMID: 29335211
  72. Venkataramana Reddy, P.O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P.N.; Shah, K.; Kumar, D. Synthesis and investigations into the anti-cancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg. Med. Chem. Lett., 2018, 28(8), 1278-1282. doi: 10.1016/j.bmcl.2018.03.033 PMID: 29573910
  73. Stanojković, T.; Marković, V.; Matić, I.Z.; Mladenović, M.P.; Petrović, N.; Krivokuća, A.; Petković, M.; Joksović, M.D. Highly selective anthraquinone-chalcone hybrids as potential antileukemia agents. Bioorg. Med. Chem. Lett., 2018, 28(15), 2593-2598. doi: 10.1016/j.bmcl.2018.06.048 PMID: 29970309
  74. Fathi, M.A.A.; Abd El-Hafeez, A.A.; Abdelhamid, D.; Abbas, S.H.; Montano, M.M.; Abdel-Aziz, M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg. Chem., 2019, 84, 150-163. doi: 10.1016/j.bioorg.2018.11.032 PMID: 30502626
  75. Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102997. doi: 10.1016/j.bioorg.2019.102997 PMID: 31136902
  76. Bilginer, S.; Gul, H.I.; Erdal, F.S.; Sakagami, H.; Levent, S.; Gulcin, I.; Supuran, C.T. Synthesis, cytotoxicities, and carbonic anhydrase inhibition potential of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1722-1729. doi: 10.1080/14756366.2019.1670657 PMID: 31576761
  77. Huang, X.; Wang, M.; Wang, C.; Hu, W.; You, Q.; Ma, T.; Jia, Q.; Yu, C.; Liao, Z.; Wang, H. Synthesis and biological evaluation of novel millepachine derivative containing aminophosphonate ester species as novel anti-tubulin agents. Bioorg. Chem., 2020, 94, 103486. doi: 10.1016/j.bioorg.2019.103486 PMID: 31818482
  78. Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 95, 103565. doi: 10.1016/j.bioorg.2019.103565 PMID: 31927336
  79. Takac, P.; Kello, M.; Vilkova, M.; Vaskova, J.; Michalkova, R.; Mojzisova, G.; Mojzis, J. Antiproliferative effect of acridine chalcone is mediated by induction of oxidative stress. Biomolecules, 2020, 10(2), 345. doi: 10.3390/biom10020345 PMID: 32098428
  80. Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-Phthalimido-Chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130. doi: 10.2147/DDDT.S256756 PMID: 32848361
  81. Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of novel Chalcone-Based phenothiazine derivatives as anti-oxidant and anticancer agents. Molecules, 2020, 25(19), 4566. doi: 10.3390/molecules25194566 PMID: 33036301
  82. Moreno, L.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1,3,5-Triazine-based 2-Pyrazolines as potential anticancer agents. Molecules, 2018, 23(8), 1956. doi: 10.3390/molecules23081956 PMID: 30082588
  83. Zhang, J.; Yang, F.; Qiao, Z.; Zhu, M.; Zhou, H. Chalcone-benzoxaborole hybrids as novel anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(23), 5797-5801. doi: 10.1016/j.bmcl.2016.10.024 PMID: 28327308
  84. Kocyigit, U.M.; Budak, Y.; Gürdere, M.B.; Tekin, Ş.; Köprülü, T.K.; Ertürk, F.; Özcan, K.; Gülçin, İ.; Ceylan, M. Synthesis, characteriza-tion, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3a R, 4 S, 7 R, 7a S)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives. Bioorg. Chem., 2017, 70, 118-125. doi: 10.1016/j.bioorg.2016.12.001 PMID: 28043719
  85. Silbermann, K.; Shah, C.P.; Sahu, N.U.; Juvale, K.; Stefan, S.M.; Kharkar, P.S.; Wiese, M. Novel chalcone and flavone derivatives as se-lective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem., 2019, 164, 193-213. doi: 10.1016/j.ejmech.2018.12.019 PMID: 30594677
  86. Jeon, K.H.; Yu, H.B.; Kwak, S.Y.; Kwon, Y.; Na, Y. Synthesis and topoisomerases inhibitory activity of heteroaromatic chalcones. Bioorg. Med. Chem., 2016, 24(22), 5921-5928. doi: 10.1016/j.bmc.2016.09.051 PMID: 27707625
  87. Shankaraiah, N.; Nekkanti, S.; Brahma, U.R.; Praveen Kumar, N.; Deshpande, N.; Prasanna, D.; Senwar, K.R.; Jaya Lakshmi, U. Synthesis of different heterocycles-linked chalcone conjugates as cytotoxic agents and tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(17), 4805-4816. doi: 10.1016/j.bmc.2017.07.031 PMID: 28774575
  88. El-Wakil, M.H.; Khattab, S.N.; El-Yazbi, A.F.; El-Nikhely, N.; Soffar, A.; Khalil, H.H. New chalcone-tethered 1,3,5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorg. Chem., 2020, 105, 104393. doi: 10.1016/j.bioorg.2020.104393 PMID: 33120322
  89. Yang, J.; Yan, W.; Yu, Y.; Wang, Y.; Yang, T.; Xue, L.; Yuan, X.; Long, C.; Liu, Z.; Chen, X.; Hu, M.; Zheng, L.; Qiu, Q.; Pei, H.; Li, D.; Wang, F.; Bai, P.; Wen, J.; Ye, H.; Chen, L. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. J. Biol. Chem., 2018, 293(24), 9461-9472. doi: 10.1074/jbc.RA117.001658 PMID: 29691282
  90. Kozłowska, J.; Potaniec, B.; Baczyńska, D.; Żarowska, B.; Anioł, M. Synthesis and biological evaluation of novel aminochalcones as po-tential anticancer and antimicrobial agents. Molecules, 2019, 24(22), 4129. doi: 10.3390/molecules24224129 PMID: 31731596
  91. Wankhede, S.; Kumar, N.; Simon, L.; Biswas, S.; Gourishetti, K.; Ramalingayya, G.V.; Joshi, M.; Rao, C.M. Evaluation of in vitro and in vivo anticancer potential of two 5-acetamido chalcones against breast cancer. EXCLI J., 2017, 16, 1150-1163. doi: 10.17179/excli2017-624 PMID: 29285012
  92. Elkhalifa, D.; Siddique, A.B.; Qusa, M.; Cyprian, F.S.; El Sayed, K.; Alali, F.; Al Moustafa, A.E.; Khalil, A. Design, synthesis, and valida-tion of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur. J. Med. Chem., 2020, 187(187), 111954. doi: 10.1016/j.ejmech.2019.111954 PMID: 31838326
  93. Lu, C.F.; Wang, S.H.; Pang, X.J.; Zhu, T.; Li, H.L.; Li, Q.R.; Li, Q.Y.; Gu, Y.F.; Mu, Z.Y.; Jin, M.J.; Li, Y.R.; Hu, Y.Y.; Zhang, Y.B.; Song, J.; Zhang, S.Y. Synthesis and biological evaluation of amino chalcone derivatives as antiproliferative agents. Molecules, 2020, 25(23), 5530. doi: 10.3390/molecules25235530 PMID: 33255804
  94. Rioux, B.; Pinon, A.; Gamond, A.; Martin, F.; Laurent, A.; Champavier, Y.; Barette, C.; Liagre, B.; Fagnère, C.; Sol, V.; Pouget, C. Synthe-sis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur. J. Med. Chem., 2021, 222, 113586. doi: 10.1016/j.ejmech.2021.113586 PMID: 34116328
  95. Zhu, M.; Wang, J.; Xie, J.; Chen, L.; Wei, X.; Jiang, X.; Bao, M.; Qiu, Y.; Chen, Q.; Li, W.; Jiang, C.; Zhou, X.; Jiang, L.; Qiu, P.; Wu, J. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur. J. Med. Chem., 2018, 157, 1395-1405. doi: 10.1016/j.ejmech.2018.08.072 PMID: 30196062
  96. Pande, A.N.; Biswas, S.; Reddy, N.D.; Jayashree, B.S.; Kumar, N.; Rao, C.M. In vitro and in vivo anticancer studies of 2′-hydroxy chal-cone derivatives exhibit apoptosis in colon cancer cells by HDAC inhibition and cell cycle arrest. EXCLI J., 2017, 16, 448-463. doi: 10.17179/excli2016-643 PMID: 28694750
  97. Teng, Y.; Wang, L.; Liu, H.; Yuan, Y.; Zhang, Q.; Wu, M.; Wang, L.; Wang, H.; Liu, Z.; Yu, P. 3′-Geranyl-mono-substituted chalcone Xanthoangelovl induces apoptosis in human leukemia K562 cells via activation of mitochondrial pathway. Chem. Biol. Interact., 2017, 261, 103-107. doi: 10.1016/j.cbi.2016.11.025 PMID: 27908776
  98. Dong, N.; Liu, X.; Zhao, T.; Wang, L.; Li, H.; Zhang, S.; Li, X.; Bai, X.; Zhang, Y.; Yang, B. Apoptosis-inducing effects and growth inhibi-tory of a novel chalcone, in human hepatic cancer cells and lung cancer cells. Biomed. Pharmacother., 2018, 105, 195-203. doi: 10.1016/j.biopha.2018.05.126 PMID: 29857299
  99. Marquina, S.; Maldonado-Santiago, M.; Sánchez-Carranza, J.N.; Antúnez-Mojica, M.; González-Maya, L.; Razo-Hernández, R.S.; Alvarez, L. Design, synthesis and QSAR study of 2′-hydroxy-4′-alkoxy chalcone derivatives that exert cytotoxic activity by the mitochondrial apoptotic pathway. Bioorg. Med. Chem., 2019, 27(1), 43-54. doi: 10.1016/j.bmc.2018.10.045 PMID: 30482548
  100. Bordoloi, D.; Monisha, J.; Roy, N.K.; Padmavathi, G.; Banik, K.; Harsha, C.; Wang, H.; Kumar, A.P.; Arfuso, F.; Kunnumakkara, A. An investigation on the therapeutic potential of butein, a tretrahydroxychalcone against human oral squamous cell carcinoma. Asian Pac. J. Cancer Prev., 2019, 20(11), 3437-3446. doi: 10.31557/APJCP.2019.20.11.3437 PMID: 31759370
  101. Alshangiti, A.M.; Tuboly, E.; Hegarty, S.V.; McCarthy, C.M.; Sullivan, A.M.; O'Keeffe, G.W. 4-hydroxychalcone induces cell death via oxidative stress in MYCN-amplified human neuroblastoma cells. Oxid. Med. Cell. Longev., 2019, 2019, 1670759. doi: 10.1155/2019/1670759 PMID: 31885773
  102. Chen, Q.; Lei, J.; Zhou, J.; Ma, S.; Huang, Q.; Ge, B. Chemopreventive effect of 4′ hydroxychalcone on intestinal tumorigenesis in ApcMin mice. Oncol. Lett., 2021, 21(3), 213. doi: 10.3892/ol.2021.12474 PMID: 33510814
  103. Ao, M.; Hu, X.; Qian, Y.; Li, B.; Zhang, J.; Cao, Y.; Zhang, Y.; Guo, K.; Qiu, Y.; Jiang, F.; Wu, Z.; Fang, M. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg. Chem., 2021, 113, 104961. doi: 10.1016/j.bioorg.2021.104961 PMID: 34023650
  104. Going, C.C.; Tailor, D.; Kumar, V.; Birk, A.M.; Pandrala, M.; Rice, M.A.; Stoyanova, T.; Malhotra, S.; Pitteri, S.J. Quantitative proteomic profiling reveals key pathways in the anticancer action of methoxychalcone derivatives in triple negative breast cancer. J. Proteome Res., 2018, 17(10), 3574-3585. doi: 10.1021/acs.jproteome.8b00636 PMID: 30200768
  105. Lima e Silva, M.C.B.; Bogo, D.; Alexandrino, C.A.F.; Perdomo, R.T.; Figueiredo, P.O.; do Prado, P.R.; Garcez, F.R.; Kadri, M.C.T.; Xime-nes, T.V.N.; Guimarães, R.C.A.; Sarmento, U.C.; Macedo, M.L.R. Antiproliferative activity of extracts of Campomanesia adamantium (Cambess.) O. Berg and isolated compound dimethylchalcone against B16-F10 murine melanoma. J. Med. Food, 2018, 21(10), 1024-1034. doi: 10.1089/jmf.2018.0001 PMID: 29715052
  106. Kuete, V.; Omosa, L.K.; Midiwo, J.O.; Karaosmanoğlu, O.; Sivas, H. Cytotoxicity of naturally occurring phenolics and terpenoids from Kenyan flora towards human carcinoma cells. J. Ayurveda Integr. Med., 2019, 10(3), 178-184. doi: 10.1016/j.jaim.2018.04.001 PMID: 30389223
  107. Chen, G.; Xie, W.; Nah, J.; Sauvat, A.; Liu, P.; Pietrocola, F.; Sica, V.; Carmona-Gutierrez, D.; Zimmermann, A.; Pendl, T.; Tadic, J.; Bergmann, M.; Hofer, S.J.; Domuz, L.; Lachkar, S.; Markaki, M.; Tavernarakis, N.; Sadoshima, J.; Madeo, F.; Kepp, O.; Kroemer, G. 3,4‐Dimethoxychalcone induces autophagy through activation of the transcription factors TFE 3 and TFEB. EMBO Mol. Med., 2019, 11(11), e10469. doi: 10.15252/emmm.201910469 PMID: 31609086
  108. Cai, C.Y.; Zhang, W.; Wang, J.Q.; Lei, Z.N.; Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Tan, C.P.; Wang, B.; Chen, Z.S. Biological evaluation of non-basic chalcone CYB-2 as a dual ABCG2/ABCB1 inhibitor. Biochem. Pharmacol., 2020, 175, 113848. doi: 10.1016/j.bcp.2020.113848 PMID: 32044354
  109. Pawlak, A.; Henklewska, M.; Hernández Suárez, B.; Łużny, M.; Kozłowska, E.; Obmińska-Mrukowicz, B.; Janeczko, T. Chalcone meth-oxy derivatives exhibit antiproliferative and proapoptotic activity on canine lymphoma and leukemia cells. Molecules, 2020, 25(19), 4362. doi: 10.3390/molecules25194362 PMID: 32977440
  110. Mendanha, D.; Vieira de Castro, J.; Moreira, J.; Costa, B.M.; Cidade, H.; Pinto, M.; Ferreira, H.; Neves, N.M. A new chalcone derivative with promising antiproliferative and anti-invasion activities in glioblastoma cells. Molecules, 2021, 26(11), 3383. doi: 10.3390/molecules26113383 PMID: 34205043
  111. Jung, E.; Koh, D.; Lim, Y.; Shin, S.Y.; Lee, Y.H. Overcoming multidrug resistance by activating unfolded protein response of the endo-plasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells. BMB Rep., 2020, 53(2), 88-93. doi: 10.5483/BMBRep.2020.53.2.108 PMID: 31401981
  112. Abu Bakar, A.; Akhtar, M.; Mohd Ali, N.; Yeap, S.; Quah, C.; Loh, W.S.; Alitheen, N.; Zareen, S.; Ul-Haq, Z.; Shah, S. Design, synthesis and docking studies of flavokawain b type chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules, 2018, 23(3), 616. doi: 10.3390/molecules23030616 PMID: 29518053
  113. Sahin, I.D.; Christodoulou, M.S.; Guzelcan, E.A.; Koyas, A.; Karaca, C.; Passarella, D.; Cetin-Atalay, R. A small library of chalcones in-duce liver cancer cell death through Akt phosphorylation inhibition. Sci. Rep., 2020, 10(1), 11814. doi: 10.1038/s41598-020-68775-9 PMID: 32678233
  114. Rice, M.A.; Kumar, V.; Tailor, D.; Garcia-Marques, F.J.; Hsu, E.C.; Liu, S.; Bermudez, A.; Kanchustambham, V.; Shankar, V.; Inde, Z.; Alabi, B.R.; Muruganantham, A.; Shen, M.; Pandrala, M.; Nolley, R.; Aslan, M.; Ghoochani, A.; Agarwal, A.; Buckup, M.; Kumar, M.; Go-ing, C.C.; Peehl, D.M.; Dixon, S.J.; Zare, R.N.; Brooks, J.D.; Pitteri, S.J.; Malhotra, S.V.; Stoyanova, T. SU086, an inhibitor of HSP90, im-pairs glycolysis and represents a treatment strategy for advanced prostate cancer. Cell Rep. Med., 2022, 3(2), 100502. doi: 10.1016/j.xcrm.2021.100502 PMID: 35243415
  115. Riaz, S.; Iqbal, M.; Ullah, R.; Zahra, R.; Chotana, G.A.; Faisal, A.; Saleem, R.S.Z. Synthesis and evaluation of novel α-substituted chalcon-es with potent anti-cancer activities and ability to overcome multidrug resistance. Bioorg. Chem., 2019, 87, 123-135. doi: 10.1016/j.bioorg.2019.03.014 PMID: 30884306
  116. Maguire, C.J.; Carlson, G.J.; Ford, J.W.; Strecker, T.E.; Hamel, E.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of structurally diverse α-conformationally restricted chalcones and related analogues. MedChemComm, 2019, 10(8), 1445-1456. doi: 10.1039/C9MD00127A PMID: 31534659
  117. Karimikia, E.; Behravan, J.; Zarghi, A.; Ghandadi, M.; Omid Malayeri, S.; Ghodsi, R. Colchicine-like β-acetamidoketones as inhibitors of microtubule polymerization: Design, synthesis and biological evaluation of in vitro anticancer activity. Iran. J. Basic Med. Sci., 2019, 22(10), 1138-1146. doi: 10.22038/ijbms.2019.34760.8242 PMID: 31998454
  118. Saito, Y.; Mizokami, A.; Izumi, K.; Naito, R.; Goto, M.; Nakagawa-Goto, K. α-Trifluoromethyl Chalcones as potent anticancer agents for androgen receptor-independent prostate cancer. Molecules, 2021, 26(9), 2812. doi: 10.3390/molecules26092812 PMID: 34068627
  119. Wang, B.; Chen, X.; Gao, J.; Su, L.; Zhang, L.; Xu, H.; Luan, Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(18), 2638-2645. doi: 10.1016/j.bmcl.2019.07.045 PMID: 31400938
  120. Canela, M.D.; Noppen, S.; Bueno, O.; Prota, A.E.; Bargsten, K.; Sáez-Calvo, G.; Jimeno, M.L.; Benkheil, M.; Ribatti, D.; Velázquez, S.; Camarasa, M.J.; Fernando Díaz, J.; Steinmetz, M.O.; Priego, E.M.; Pérez-Pérez, M.J.; Liekens, S. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Oncotarget, 2017, 8(9), 14325-14342. doi: 10.18632/oncotarget.9527 PMID: 27224920
  121. Gao, S.; Sun, D.; Wang, G.; Zhang, J.; Jiang, Y.; Li, G.; Zhang, K.; Wang, L.; Huang, J.; Chen, L. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells. Bioorg. Chem., 2016, 69, 121-128. doi: 10.1016/j.bioorg.2016.10.005 PMID: 27814565
  122. Zhang, Y.; Yang, J.; Wen, Z.; Chen, X.; Yu, J.; Yuan, D.; Xu, B.; Luo, H.; Zhu, J. A novel 3′,5′-diprenylated chalcone induces concurrent apoptosis and GSDME-dependent pyroptosis through activating PKCδ/JNK signal in prostate cancer. Aging, 2020, 12(10), 9103-9124. doi: 10.18632/aging.103178 PMID: 32427575
  123. Wang, T.; Dong, J.; Yuan, X.; Wen, H.; Wu, L.; Liu, J.; Sui, H.; Deng, W. A new chalcone derivative C49 reverses doxorubicin resistance in MCF-7/DOX cells by inhibiting p-glycoprotein expression. Front. Pharmacol., 2021, 12, 653306. doi: 10.3389/fphar.2021.653306 PMID: 33927626
  124. Ngameni, B.; Cedric, K.; Mbaveng, A.T.; Erdoğan, M.; Simo, I.; Kuete, V.; Daştan, A. Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives. Bioorg. Med. Chem. Lett., 2021, 35, 127827. doi: 10.1016/j.bmcl.2021.127827 PMID: 33508467
  125. Ma, Y.C.; Wang, Z.X.; Jin, S.J.; Zhang, Y.X.; Hu, G.Q.; Cui, D.T.; Wang, J.S.; Wang, M.; Wang, F.Q.; Zhao, Z.J. Dual inhibition of topoi-somerase II and tyrosine kinases by the novel bis-fluoroquinolone chalcone-like derivative HMNE3 in human pancreatic cancer cells. PLoS One, 2016, 11(10), e0162821. doi: 10.1371/journal.pone.0162821 PMID: 27760157
  126. Zhao, X.; Dong, W.; Gao, Y.; Shin, D.S.; Ye, Q.; Su, L.; Jiang, F.; Zhao, B.; Miao, J. Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Sci. Rep., 2017, 7(1), 3919. doi: 10.1038/s41598-017-04411-3 PMID: 28634389
  127. Break, M.K.B.; Hossan, M.S.; Khoo, Y.; Qazzaz, M.E.; Al-Hayali, M.Z.K.; Chow, S.C.; Wiart, C.; Bradshaw, T.D.; Collins, H.; Khoo, T.J. Discovery of a highly active anticancer analogue of cardamonin that acts as an inducer of caspase-dependent apoptosis and modulator of the mTOR pathway. Fitoterapia, 2018, 125, 161-173. doi: 10.1016/j.fitote.2018.01.006 PMID: 29355749
  128. Hossan, M.S.; Break, M.K.B.; Bradshaw, T.D.; Collins, H.M.; Wiart, C.; Khoo, T.J.; Alafnan, A. Novel semi-synthetic Cu (II)–cardamonin complex exerts potent anticancer activity against triple-negative breast and pancreatic cancer cells via inhibition of the Akt signaling path-way. Molecules, 2021, 26(8), 2166. doi: 10.3390/molecules26082166 PMID: 33918814
  129. Sansalone, L.; Veliz, E.; Myrthil, N.; Stathias, V.; Walters, W.; Torrens, I.; Schürer, S.; Vanni, S.; Leblanc, R.; Graham, R. Novel curcumin inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers, 2019, 11(3), 357. doi: 10.3390/cancers11030357 PMID: 30871215
  130. Burmaoglu, S.; Ozcan, S.; Balcioglu, S.; Gencel, M.; Noma, S.A.A.; Essiz, S.; Ates, B.; Algul, O. Synthesis, biological evaluation and mo-lecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorg. Chem., 2019, 91, 103149. doi: 10.1016/j.bioorg.2019.103149 PMID: 31382060
  131. Yang, J.; Mu, W.W.; Liu, G.Y. Synthesis and evaluation of the anticancer activity of bischalcone analogs in human lung carcinoma (A549) cell line. Eur. J. Pharmacol., 2020, 888, 173396. doi: 10.1016/j.ejphar.2020.173396 PMID: 32798508
  132. Burmaoglu, S.; Gobek, A.; Aydin, B.O.; Yurtoglu, E.; Aydin, B.N.; Ozkat, G.Y.; Hepokur, C.; Ozek, N.S.; Aysin, F.; Altundas, R.; Algul, O. Design, synthesis and biological evaluation of novel bischalcone derivatives as potential anticancer agents. Bioorg. Chem., 2021, 111, 104882. doi: 10.1016/j.bioorg.2021.104882 PMID: 33839582
  133. Bianchi, S.E.; Pegues, M.A.; Dias, C.K.; Mascia, F.; Doneda, E.; Pittol, V.; Rao, V.A.; Klamt, F.; Bassani, V.L. Achyrocline satureioides compounds, achyrobichalcone and 3‐O ‐methylquercetin, induce mitochondrial dysfunction and apoptosis in human breast cancer cell lines. IUBMB Life, 2020, 72(10), 2133-2145. doi: 10.1002/iub.2348 PMID: 32710804
  134. Li, J.; Zheng, L.; Yan, M.; Wu, J.; Liu, Y.; Tian, X.; Jiang, W.; Zhang, L.; Wang, R. Activity and mechanism of flavokawain A in inhibiting permeability glycoprotein expression in paclitaxel resistance of lung cancer. Oncol. Lett., 2020, 19(1), 379-387. doi: 10.3892/ol.2019.11069 PMID: 31897150
  135. Rossette, M.C.; Moraes, D.C.; Sacramento, E.K.; Romano-Silva, M.A.; Carvalho, J.L.; Gomes, D.A.; Caldas, H.; Friedman, E.; Bastos-Rodrigues, L.; De Marco, L. The in vitro and in vivo antiangiogenic effects of flavokawain B. Phytother. Res., 2017, 31(10), 1607-1613. doi: 10.1002/ptr.5891 PMID: 28816367
  136. Hseu, Y.C.; Lin, R.W.; Shen, Y.C.; Lin, K.Y.; Liao, J.W.; Thiyagarajan, V.; Yang, H.L. Flavokawain B and doxorubicin work synergistical-ly to impede the propagation of gastric cancer cells via ROS-mediated apoptosis and autophagy pathways. Cancers (Basel), 2020, 12(9), 2475. doi: 10.3390/cancers12092475 PMID: 32882870
  137. Abd Malek, S.N.; Phang, C-W.; Karsani, S.A. Induction of apoptosis and cell cycle arrest by flavokawain C on HT-29 human colon adenocarcinoma via enhancement of reactive oxygen species generation, upregulation of p21, p27, and Gadd153, and inactivation of inhibitor of apoptosis proteins. Pharmacogn. Mag., 2017, 13(50: Suppl. 2), 321. doi: 10.4103/0973-1296.210180 PMID: 28808400
  138. Wang, X.; Zhou, X.; Zhang, L.; Zhang, X.; Yang, C.; Piao, Y.; Zhao, J.; Jin, L.; Jin, G.; An, R.; Ren, X. Crowberry inhibits cell proliferation and migration through a molecular mechanism that includes inhibition of DEK and Akt signaling in cholangiocarcinoma. Chin. Med., 2022, 17(1), 69. doi: 10.1186/s13020-022-00623-6 PMID: 35698073
  139. Komoto, T.T.; Lee, J.; Lertpatipanpong, P.; Ryu, J.; Marins, M.; Fachin, A.L.; Baek, S.J. Trans-chalcone suppresses tumor growth mediat-ed at least in part by the induction of heme oxygenase-1 in breast cancer. Toxicol. Res., 2021, 37(4), 485-493. doi: 10.1007/s43188-021-00089-y PMID: 34631505
  140. Shi, Y.; Wu, W.Z.; Huo, A.; Zhou, W.; Jin, X.H. Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcino-ma cells. Oncol. Lett., 2017, 14(3), 2852-2858. doi: 10.3892/ol.2017.6517 PMID: 28928824
  141. Sa, B.K.; Kim, C.; Kim, M.B.; Hwang, J.K.; Panduratin, A. Panduratin a prevents tumor necrosis factor-alpha-induced muscle atrophy in L6 Rat skeletal muscle cells. J. Med. Food, 2017, 20(11), 1047-1054. doi: 10.1089/jmf.2017.3970 PMID: 28933980
  142. Song, H.S.; Jang, S.; Kang, S.C. Bavachalcone from Cullen corylifolium induces apoptosis and autophagy in HepG2 cells. Phytomedicine, 2018, 40, 37-47. doi: 10.1016/j.phymed.2017.12.030 PMID: 29496173
  143. Choommongkol, V.; Punturee, K.; Klumphu, P.; Rattanaburi, P.; Meepowpan, P.; Suttiarporn, P. microwave-assisted extraction of anti-cancer flavonoid, 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethyl chalcone (DMC), rich extract from Syzygium nervosum Fruits. Molecules, 2022, 27(4), 1397. doi: 10.3390/molecules27041397 PMID: 35209190
  144. Utama, K.; Khamto, N.; Meepowpan, P.; Aobchey, P.; Kantapan, J.; Sringarm, K.; Roytrakul, S.; Sangthong, P. Effects of 2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone from Syzygium nervosum seeds on antiproliferative, DNA damage, cell cycle arrest, and apoptosis in human cervical cancer cell lines. Molecules, 2022, 27(4), 1154. doi: 10.3390/molecules27041154 PMID: 35208945
  145. Wei, X.; Mo, X.; An, F.; Ji, X.; Lu, Y. 2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone, a potent Nrf2/ARE pathway inhibitor, reverses drug resistance by decreasing glutathione synthesis and drug efflux in BEL-7402/5-FU cells. Food Chem. Toxicol., 2018, 119, 252-259. doi: 10.1016/j.fct.2018.04.001 PMID: 29626576
  146. Predes, D.; Oliveira, L.F.S.; Ferreira, L.S.S.; Maia, L.A.; Delou, J.M.A.; Faletti, A.; Oliveira, I.; Amado, N.G.; Reis, A.H.; Fraga, C.A.M.; Kuster, R.; Mendes, F.A.; Borges, H.L.; Abreu, J.G. The chalcone lonchocarpin Inhibits Wnt/β-Catenin signaling and suppresses colorectal cancer proliferation. Cancers, 2019, 11(12), 1968. doi: 10.3390/cancers11121968 PMID: 31817828
  147. Liu, X.; An, L.J.; Li, Y.; Wang, Y.; Zhao, L.; Lv, X.; Guo, J.; Song, A.L. Xanthohumol chalcone acts as a powerful inhibitor of carcino-genesis in drug-resistant human colon carcinoma and these effects are mediated via G2/M phase cell cycle arrest, activation of apoptotic pathways, caspase activation and targeting Ras/MEK/ERK pathway. J. BUON, 2019, 24(6), 2442-2447. doi: 10.3390/molecules26144214 PMID: 31983118
  148. Nguyen, N.L.; Vo, T.H.; Lin, Y.C.; Liaw, C.C.; Lin, Z.H.; Chen, M.C.; Kuo, Y.H. bioassay-guided isolation and hplc quantification of antiproliferative metabolites from Stahlianthus thorelii. Molecules, 2020, 25(3), 551. doi: 10.3390/molecules25030551 PMID: 32012805
  149. Karsani, S.A.; Fong, H.Y.; Abd Malek, S.N.; Yee, H.S. Helichrysetin induces DNA damage that triggers JNK-mediated apoptosis in Ca Ski cells. Pharmacogn. Mag., 2017, 13(52), 607-612. doi: 10.4103/pm.pm_53_17 PMID: 29200721
  150. Park, S.H.; Lee, J.; Shon, J.C.; Phuc, N.M.; Jee, J.G.; Liu, K.H. The inhibitory potential of Broussochalcone A for the human cytochrome P450 2J2 isoform and its anti-cancer effects via FOXO3 activation. Phytomedicine, 2018, 42, 199-206. doi: 10.1016/j.phymed.2018.03.032 PMID: 29655687
  151. Zhang, J.; Li, J.; Song, H.; Xiong, Y.; Liu, D.; Bai, X. Hydroxysafflor yellow A suppresses angiogenesis of hepatocellular carcinoma through inhibition of p38 MAPK phosphorylation. Biomed. Pharmacother., 2019, 109, 806-814. doi: 10.1016/j.biopha.2018.09.086 PMID: 30551534
  152. Ma, Y.; Feng, C.; Wang, J.; Chen, Z.; Wei, P.; Fan, A.; Wang, X.; Yu, X.; Ge, D.; Xie, H.; Liu, L.; Zhang, Q.; Li, X.H. Hydroxyl safflower yellow A regulates the tumor immune microenvironment to produce an anticancer effect in a mouse model of hepatocellular carcinoma. Oncol. Lett., 2019, 17(3), 3503-3510. doi: 10.3892/ol.2019.9946 PMID: 30867790
  153. Berning, L.; Scharf, L.; Aplak, E.; Stucki, D.; von Montfort, C.; Reichert, A.S.; Stahl, W.; Brenneisen, P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One, 2019, 14(9), e0222267. doi: 10.1371/journal.pone.0222267 PMID: 31553748
  154. Hou, S.; Yuan, Q.; Yu, N.; Liu, B.; Huang, G.; Yuan, X. Cardamonin attenuates chronic inflammation and tumorigenesis in colon. Cell Cycle, 2019, 18(23), 3275-3287. doi: 10.1080/15384101.2019.1673620 PMID: 31570032
  155. Badroon, N.A.; Abdul Majid, N.; Alshawsh, M.A. Antiproliferative and apoptotic effects of cardamonin against hepatocellular carcinoma HepG2 Cells. Nutrients, 2020, 12(6), 1757. doi: 10.3390/nu12061757 PMID: 32545423
  156. Ruibin, J.; Bo, J.; Danying, W.; Jianguo, F.; Linhui, G. Cardamonin induces G2/M phase arrest and apoptosis through inhibition of NF-κB and mTOR pathways in ovarian cancer. Aging, 2020, 12(24), 25730-25743. doi: 10.18632/aging.104184 PMID: 33234722
  157. Kwak, A.W.; Choi, J.S.; Lee, M.H.; Oh, H.N.; Cho, S.S.; Yoon, G.; Liu, K.; Chae, J.I.; Shim, J.H. Retrochalcone echinatin triggers apopto-sis of esophageal squamous cell carcinoma via ROS- and ER stress-mediated signaling pathways. Molecules, 2019, 24(22), 4055. doi: 10.3390/molecules24224055 PMID: 31717502
  158. Hong, P.; Liu, Q.W.; Xie, Y.; Zhang, Q.H.; Liao, L.; He, Q.Y.; Li, B.; Xu, W.W. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis., 2020, 11(7), 524. doi: 10.1038/s41419-020-2730-7 PMID: 32655130
  159. Muchtaridi, M.; Yusuf, M.; Syahidah, H.N.; Subarnas, A.; Zamri, A.; Bryant, S.; Langer, T. Cytotoxicity of chalcone of Eugenia aquea Burm F. leaves against T47D breast cancer cell lines and its prediction as an estrogen receptor antagonist based on pharmacophore-molecular dynamics simulation. Adv. Appl. Bioinform. Chem., 2019, 12, 33-43. doi: 10.2147/AABC.S217205 PMID: 31807030
  160. Wang, G.; Chen, X.; Wang, N.; Xiao, Y.; Shu, S.; Alsayed, A.M.M.; Liu, L.; Ma, Y.; Liu, P.; Zhang, Q.; Chen, X.; Liu, Z.; Zheng, X. The discovery of novel sanjuanolide derivatives as chemotherapeutic agents targeting castration-resistant prostate cancer. Bioorg. Chem., 2021, 111, 104880. doi: 10.1016/j.bioorg.2021.104880 PMID: 33839585
  161. Zhang, H.L.; Zhang, Y.; Yan, X.L.; Xiao, L.G.; Hu, D.X.; Yu, Q.; An, L.K. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg. Med. Chem., 2020, 28(11), 115527. doi: 10.1016/j.bmc.2020.115527 PMID: 32345458
  162. Hou, C.; Li, W.; Li, Z.; Gao, J.; Chen, Z.; Zhao, X.; Yang, Y.; Zhang, X.; Song, Y. Synthetic isoliquiritigenin inhibits human tongue squa-mous carcinoma cells through its antioxidant mechanism. Oxid. Med. Cell. Longev., 2017, 2017, 1379430. doi: 10.1155/2017/1379430 PMID: 28203317
  163. Peng, F.; Tang, H.; Liu, P.; Shen, J.; Guan, X.; Xie, X.; Gao, J.; Xiong, L.; Jia, L.; Chen, J.; Peng, C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 9022. doi: 10.1038/s41598-017-08422-y PMID: 28827662
  164. Kim, D.H.; Park, J.E.; Chae, I.G.; Park, G.; Lee, S.; Chun, K.S. Isoliquiritigenin inhibits the proliferation of human renal carcinoma Caki cells through the ROS-mediated regulation of the Jak2/STAT3 pathway. Oncol. Rep., 2017, 38(1), 575-583. doi: 10.3892/or.2017.5677 PMID: 28560439
  165. Huang, Y.; Liu, C.; Zeng, W.C.; Xu, G.Y.; Wu, J.M.; Li, Z.W.; Huang, X.Y.; Lin, R.J.; Shi, X. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci. Rep., 2020, 40(1), BSR20192727. doi: 10.1042/BSR20192727 PMID: 31840737
  166. Chen, C.; Huang, S.; Chen, C.L.; Su, S.B.; Fang, D.D. Isoliquiritigenin inhibits ovarian cancer metastasis by reversing epithelial-to-mesenchymal transition. Molecules, 2019, 24(20), 3725. doi: 10.3390/molecules24203725 PMID: 31623144
  167. Song, L.; Luo, Y.; Li, S.; Hong, M.; Wang, Q.; Chi, X.; Yang, C. ISL induces apoptosis and autophagy in hepatocellular carcinoma via downregulation of PI3K/AKT/mTOR pathway in vivo and in vitro. Drug Des. Devel. Ther., 2020, 14, 4363-4376. doi: 10.2147/DDDT.S270124 PMID: 33116421
  168. Jin, H.; Seo, G.S.; Lee, S.H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspa-se-8 activation in colorectal cancer cells. Eur. J. Pharmacol., 2018, 841, 90-97. doi: 10.1016/j.ejphar.2018.10.015 PMID: 30339814
  169. Xiang, S.; Chen, H.; Luo, X.; An, B.; Wu, W.; Cao, S.; Ruan, S.; Wang, Z.; Weng, L.; Zhu, H.; Liu, Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 184. doi: 10.1186/s13046-018-0844-x PMID: 30081934
  170. Alshangiti, A.M.; Togher, K.L.; Hegarty, S.V.; Sullivan, A.M.; O'Keeffe, G.W. The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal., 2019, 3(1), NS20180201. doi: 10.1042/NS20180201 PMID: 32269833
  171. Zhang, B.; Lai, Y.; Li, Y.; Shu, N.; Wang, Z.; Wang, Y.; Li, Y.; Chen, Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol., 2018, 821, 57-67. doi: 10.1016/j.ejphar.2017.12.053 PMID: 29277717
  172. Bortolotto, L.F.B.; Barbosa, F.R.; Silva, G.; Bitencourt, T.A.; Beleboni, R.O.; Baek, S.J.; Marins, M.; Fachin, A.L. Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother., 2017, 85, 425-433. doi: 10.1016/j.biopha.2016.11.047 PMID: 27903423
  173. Qiu, C.; Zhang, T.; Zhang, W.; Zhou, L.; Yu, B.; Wang, W.; Yang, Z.; Liu, Z.; Zou, P.; Liang, G.; Licochalcone, A.; Licochalcone, A. Inhibits the proliferation of human lung cancer cell lines A549 and H460 by Inducing G2/M cell cycle arrest and ER stress. Int. J. Mol. Sci., 2017, 18(8), 1761. doi: 10.3390/ijms18081761 PMID: 28805696
  174. Chen, X.; Liu, Z.; Meng, R.; Shi, C.; Guo, N. Antioxidative and anticancer properties of Licochalcone A from licorice. J. Ethnopharmacol., 2017, 198, 331-337. doi: 10.1016/j.jep.2017.01.028 PMID: 28111219
  175. Wang, J.; Zhang, Y.S.; Thakur, K.; Hussain, S.S.; Zhang, J.G.; Xiao, G.R.; Wei, Z.J. Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food Chem. Toxicol., 2018, 120, 407-417. doi: 10.1016/j.fct.2018.07.044 PMID: 30055311
  176. Hong, S.H.; Cha, H.J.; Hwang-Bo, H.; Kim, M.Y.; Kim, S.Y.; Ji, S.Y.; Cheong, J.; Park, C.; Lee, H.; Kim, G.Y.; Moon, S.K.; Yun, S.J.; Chang, Y.C.; Kim, W.J.; Choi, Y.H. Anti-proliferative and pro-apoptotic effects of licochalcone A through ROS-mediated cell cycle arrest and apoptosis in human bladder cancer cells. Int. J. Mol. Sci., 2019, 20(15), 3820. doi: 10.3390/ijms20153820 PMID: 31387245
  177. Shen, T.S.; Hsu, Y.K.; Huang, Y.F.; Chen, H.Y.; Hsieh, C.P.; Chen, C.L. Licochalcone A suppresses the proliferation of osteosarcoma cells through autophagy and ATM-Chk2 activation. Molecules, 2019, 24(13), 2435. doi: 10.3390/molecules24132435 PMID: 31269698
  178. Wu, P.; Yu, T.; Wu, J.; Chen, J. Licochalcone a induces ROS-mediated apoptosis through TrxR1 inactivation in colorectal cancer cells. BioMed Res. Int., 2020, 2020, 5875074. doi: 10.1155/2020/5875074 PMID: 32596335
  179. Liu, X.; Xing, Y.; Li, M.; Zhang, Z.; Wang, J.; Ri, M.; Jin, C.; Xu, G.; Piao, L.; Jin, H.; Zuo, H.; Ma, J.; Jin, X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-KB and Ras/Raf/MEK pathways. J. Ethnopharmacol., 2021, 273, 113989. doi: 10.1016/j.jep.2021.113989 PMID: 33677006
  180. Mu, Y.; Dong, J.; Cui, H.; Hu, J.; Liang, J.; Yan, L. Effect of Licochalcone-A combined with Rab23 gene on proliferation of glioma U251 cells. Evid. Based Complement. Alternat. Med., 2022, 2022, 9299442. doi: 10.1155/2022/9299442 PMID: 35497928
  181. Kang, T.H.; Yoon, G.; Kang, I.A.; Oh, H.N.; Chae, J.I.; Shim, J.H. Natural compound Licochalcone B induced extrinsic and intrinsic apop-tosis in human skin melanoma (A375) and squamous cell carcinoma (A431) cells. Phytother. Res., 2017, 31(12), 1858-1867. doi: 10.1002/ptr.5928 PMID: 29027311
  182. Oh, H.N.; Lee, M.H.; Kim, E.; Yoon, G.; Chae, J.I.; Shim, J.H. Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine, 2019, 63, 153014. doi: 10.1016/j.phymed.2019.153014 PMID: 31323446
  183. Oh, H.N.; Lee, M.H.; Kim, E.; Kwak, A.W.; Yoon, G.; Cho, S.S.; Liu, K.; Chae, J.I.; Shim, J.H. Licochalcone D induces ROSdependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET. Biomolecules, 2020, 10(2), 297. doi: 10.3390/biom10020297
  184. Nho, S.H.; Yoon, G.; Seo, J.H.; Oh, H.N.; Cho, S.S.; Kim, H.; Choi, H.; Shim, J.H.; Chae, J.I. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol. Rep., 2018, 41(1), 333-340. doi: 10.3892/or.2018.6784 PMID: 30320347
  185. Oh, H.N.; Oh, K.B.; Lee, M.H.; Seo, J.H.; Kim, E.; Yoon, G.; Cho, S.S.; Cho, Y.S.; Choi, H.W.; Chae, J.I.I.; Shim, J.H. JAK2 regulation by licochalcone H inhibits the cell growth and induces apoptosis in oral squamous cell carcinoma. Phytomedicine, 2019, 52, 60-69. doi: 10.1016/j.phymed.2018.09.180 PMID: 30599913

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2023