Universality of the Spectra of Multiterminal Josephson Junction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Andreev bound states are formed in multiterminal structures based on normal metals and superconductors. Their spectrum is determined by the system parameters, in particular the scattering phases and transmission coefficients at the nodes. The article found conditions under which Andreev bound states are universal: they don’t change with any change in the reflection phases. As a consequence, the spectrum is completely determined by the transport characteristics of the system. The result was obtained for a structure in the form of a normal metal M-finite star, each of the rays (terminals) Nk of which is in contact with its superconductor Sk, 1 ≤ kM. Together they form a multiterminal Josephson junction. At the center of the structure there is a non-magnetic impurity with its some scattering matrix.

Sobre autores

A. Posadsky

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: posadskij.af@phystech.edu
Rússia, Moscow; Dolgoprudny

A. Semenov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology

Email: semenov@lpi.ru
Rússia, Moscow; Moscow

P. Arseev

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: ars@lpi.ru

Corresponding Member of the RAS

Rússia, Moscow

Bibliografia

  1. Josephson B.D. Possible new effects in superconductive tunnelling // Phys. Lett. 1962.
  2. Hwang S.-Y., Giazotto F., Sothmann B. Phase-Coherent Heat Circulator Based on Multiterminal Josephson Junctions // Physical Review Applied. 2018. V. 10. P. 044062.
  3. Amin M.H.S., Omelyanchouk A.N., and Zagoskin A.M. Mesoscopic multiterminal Josephson structures. I. Effects of nonlocal weak coupling // Low Temperature Physics. 2001. V. 27. P. 616.
  4. Andreev A.F. The thermal conductivity of the intermediate state in superconductors // Sov. Phys. JETP. 1964. P. 1228–1234.
  5. Heck B. van, Mi S., and Akhmerov A.R. Single fermion manipulation via superconducting phase multiterminal Josephson junctions // Phys. Rev. B. 2014. V. 90. P. 155450.
  6. Riwar R.-P., Houzet M., Meyer J.S., Nazarov Y.V. Multi-terminal Josephson junctions as topological materials // Nature Communications. 2016. V. 7. P. 11167.
  7. Xie Hong-Yi, Vavilov M.G., and Levchenko A. Weyl nodes in Andreev spectra of multiterminal Josephson junctions: Chern numbers, conductances, and supercurrents // Phys. Rev. B. 2018. V. 97. P. 035443.
  8. Morfonios C.V., Schmelcher P. Control of Magnetotransport in Quantum Billiards: Theory, Computation and Applications. Lecture Notes in Physics. V. 927. Springer International Publishing Switzerland 2017.
  9. Bagwell Ph.F. Suppression of the Josephson current through a narrow, mesoscopic, semiconductor channel by a single impurity // Phys. Rev. B. 1992. V. 46.
  10. Xie Hong-Yi, Vavilov M.G., and Levchenko A. Topological Andreev bands in three-terminal Josephson junctions // Phys. Rev. B. 2017. V. 96. P. 161406(R).
  11. Savinov D.A. Scattering-matrix approach to the theory of Josephson transport in mesoscopic multiterminal nodes // Physica C Superconductivity. 2015. V. 509. P. 22–28.
  12. Beenakker C.W.J., and Houten H. van. The Superconducting Quantum Point Contact // Nanostructures and Mesoscopic Systems. 1992. P. 481–497.
  13. Gennes P.G. de Superconductivity of Metals and Alloys. N.Y., W.A. Benjamin, 1966.
  14. Beenakker C.W.J. Universal Limit of Critical-Current Fluctuations in Mesoscopic Josephson Junctions // Phys. Rev. Lett. 1991. V. 67. P. 3836.
  15. Gnutzmann S. and Smilansky U. Quantum Graphs: Applications to Quantum Chaos and Universal Spectral Statistics // Advances in Physics. 2006. V. 55. P. 527–625.
  16. Auberson G., Martin A. and Mennessier G. On the Reconstruction of a Unitary Matrix from Its Moduli // Commun. Math. Phys. 1991. V. 140. P. 523–542.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024