Assessment of the Modifying Effect of Zinc and Copper on Toxic Stress of Barley Plants Caused by Cadmium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In a vegetation experiment on sod-podzolic sandy loam soil with Cd2+ addition at doses of 25 and 45 mg/kg, we studied how the response of barley plants to the toxic effects of cadmium changes if various amounts of heavy metals (HM) with the functions of trace elements were introduced together with it, using the example of zinc and copper. In addition, several variants were laid, in which copper and zinc were also introduced along with cadmium. Thus, doses and combinations of metals were used in the experiment: Cd45, Cd25Cu50, Cd25Cu100, Cd25Cu100, Cd25Cu200, Cd45Cu50, Cd45Cu100, Cd45Cu200, Cd45Zn50, Cd45Zn100, Cd45Zn150. Morphometric parameters (appearance, height of plants, their biomass and leaf area), biochemical parameters (accumulation of MDA, total antioxidants and crude protein), crop structure (straw weight, grain weight, 1000 grain weight) were evaluated in experimental plants. In addition, the gross content of HM and other elements in the soil and their transition to the soil solution were analyzed. It is shown that the introduction of cadmium alone led to a significant inhibition of the growth and development of barley plants. At the same time, the combined addition of HM trace elements with cadmium significantly modified the effect of cadmium. Zinc contributed to a decrease in the toxic effects of cadmium, and the intensity of this effect increased as the concentration of zinc increased, and the toxic effects of this HM at the doses considered had not yet manifested themselves. Copper, as a more toxic element, showed its stimulating effect at lower doses than zinc, and at higher doses, the development of acute stress caused by the combined toxic effects of 2 HM was observed. This is true for a dose of cadmium of 45 mg/kg, with a lower dose of cadmium (25 mg/kg), copper had a greater stimulating effect. The considered effects were primarily noted when evaluating morphometric indicators and productivity. Based on the biochemical parameters, it was not possible to draw clear conclusions about how the addition of zinc and copper changed the effects of cadmium. Apparently, it was more appropriate to use other biochemical parameters to assess stress effects. It was noted that the introduction of trace elements generally contributed to a reduction in the accumulation of cadmium in the aboveground biomass of barley plants, however, the addition of zinc led to an increased transition of cadmium into straw, but not into grain.

Full Text

Restricted Access

About the authors

А. V. Dikarev

Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: ar.djuna@yandex.ru
Russian Federation, Kiev highway 1, corp. 1, Kaluga region, Obninsk 249035

D. V. Dikarev

Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”

Email: ar.djuna@yandex.ru
Russian Federation, Kiev highway 1, corp. 1, Kaluga region, Obninsk 249035

D. V. Krylenkin

Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”

Email: ar.djuna@yandex.ru
Russian Federation, Kiev highway 1, corp. 1, Kaluga region, Obninsk 249035

References

  1. Алексахин Р.М., Фесенко С.В., Гераськин С.А. Методика оценки экологических последствий техногенного загрязнения агроэкосистем. М.: Изд-во МГУ, 2004. 206 с.
  2. Dandan L., Dongmei Z., Peng W., Nanyan W., Xiangdong Z. Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots // Ecotoxicol. Environ. Saf. 2011. V. 74. P. 874–881.
  3. Clemens S. Molecular mechanisms of plants metal tolerance and homeostasis // Planta. 2001. V. 212. P. 475–486.
  4. Физиология растений / Под ред. Ермакова И.П. М.: Academia, 2005. 640 c.
  5. Якушкина Н.И., Бахтенко Е.Ю. Физиология растений. М.: Владос, 2004. 464 с.
  6. Qin R., Wang C., Chen D., Bjorn L.O., Li S. Copper-induced root growth inhibition of Allium cepa var. Agrogarum L. involves disturbances in cell division and DNA damage // Environ. Toxicol. Сhem. 2015. V. 34. № 5. P. 1045–1055.
  7. Позняк С.С. Содержание тяжелых металлов Pb, Ni, Zn, Cu, Mn, Zr, Cr, Co и Sn в почвах центральной зоны республики Беларусь // Эконом. и экол. менеджмент. 2011. № 1. С. 23–35.
  8. Журбицкий З.И. Теория и практика вегетационного метода. М.: Наука, 1968. 260 с.
  9. Агрохимические методы исследования почв. М.: Наука, 1975. 656 с.
  10. Тяжелые металлы в агроценозах: миграция, действие, нормирование / Под ред. Санжаровой Н.И., Цыгвинцева П.Н. Обнинск: ВНИИРАЭ, 2019. 398 с.
  11. Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. № 1. P. 189–198.
  12. Vijayalakshmi M., Ruckmani K. Ferric reducing anti-oxidant power assay in plant extract // Bangladesh J. Pharmacol. 2016. V. 11. P. 570–572.
  13. Lowry D.H., Rosebrough H.J., Farr A.L., Randall R.J. Protein measurement with the Folinphenol reagent // J. Biol. Chem. 1951. V. 193. № 1. P. 265–275.
  14. Плешков Б.П. Практикум по биохимии растений. М.: Колос, 1976. 256 с.
  15. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства / Под ред. Артюшина А.М. М.: ЦИНАО, 1992. 56 с.
  16. Гераськин С.А., Дикарев А.В., Лыченкова М.А. Дифференциация сортов ячменя по устойчивости к кадмию сохраняется на протяжении всего жизненного цикла растений // Агрохимия. 2021. № 2. С. 78–85.
  17. Гераськин С.А., Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Анализ внутривидового полиморфизма ячменя по устойчивости к действию кадмия // Агрохимия. 2021. № 8. С. 57–64.
  18. Полесская О.Г. Растительная клетка и активные формы кислорода. М.: Университет, 2007. 139 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Appearance of barley plants of the Zazersky 85 variety on the 30th day of cultivation (from left to right (a) - variants Zn150Cd45, Zn100Cd45, Zn50Cd45, Zn0Cd45, control; (b) – variants Cu200Cd25, Cu100Cd25, Cu50Cd25, control; (c) – variants Cu200Cd45, Cu100Cd45, Cu50Cd45, Cu0Cd45, control).

Download (411KB)
3. Fig. 2. The effect of cadmium in combination with zinc and copper on the height, leaf area and biomass of barley plants of the Zazersky 85 variety.

Download (195KB)
4. Fig. 3. The content of MDA in the tissues of 30-day-old barley plants of the Zazersky variety 85.

Download (138KB)
5. Fig. 4. The total content of low molecular weight antioxidants in the tissues of barley plants of the Zazersky variety 85.

Download (158KB)
6. Fig. 5. The total crude protein content in the tissues of barley plants of the Zazersky variety 85.

Download (179KB)
7. Fig. 6. Assessment of the structure of the barley harvest under the combined effect of TM.

Download (162KB)
8. Fig. 7. The content of TM in the aboveground biomass of barley plants: (a) cadmium, (b) copper (for variants with copper addition) and zinc (for variants with zinc).

Download (264KB)

Copyright (c) 2024 The Russian Academy of Sciences