Formation of Nanostructured Li4Ti5O12-Based Composites upon Hydrothermal Treatment of Their Components
- Authors: Zima T.M.1,2, Ukhina A.V.3, Uvarov N.F.4,5
-
Affiliations:
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State Technical University
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk State University
- Issue: Vol 59, No 9 (2023)
- Pages: 997-1003
- Section: Articles
- URL: https://kld-journal.fedlab.ru/0002-337X/article/view/668128
- DOI: https://doi.org/10.31857/S0002337X23090178
- EDN: https://elibrary.ru/ABFWTG
- ID: 668128
Cite item
Abstract
Nanostructured Li4Ti5O12-based composites in the form of microspheres consisting of randomly packed prism-like particles have been prepared via hydrothermal treatment of TiO2 xerogel in aqueous LiOH solutions, followed by calcination of the reaction products at t ≥ 550°C. The phase composition of the hydrothermally prepared spherical particles has been shown to correspond to α-Li2TiO3. According to elemental analysis data, the titanium and oxygen were nonuniformly distributed over the microspheres. Sequential calcination of the microspheres at t ≤ 750°C led first to the α-Li2TiO3 → β-Li2TiO3 phase transformation and then to the formation of nanostructured Li4Ti5O12 spinel or spinel-based composites (Li4Ti5O12/TiO2 and Li4Ti5O12/β-Li2TiO3). The Li4Ti5O12 microspheres calcined at 750°C consisted of not only the major crystalline phase but also X-ray amorphous TiO2 (anatase) and β-Li2TiO3 as impurity phases, which could not be detected by X-ray diffraction.
About the authors
T. M. Zima
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University
Email: zima@solid.nsc.ru
630128, Novosibirsk, Russia; 630073, Novosibirsk, Russia
A. V. Ukhina
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences
Email: kurmaschov@gmail.com
Russian, 630090, Novosibirsk
N. F. Uvarov
Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University
Author for correspondence.
Email: YuliaM@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
References
- Yan H., Zhang D., Qilu, Duo X., Sheng X. A Review of Spinel Lithium Titanate (Li4Ti5O12) as Electrode Material for Advanced Energy Storage Devices // Ceram. Int. 2021. V. 47. P. 5870–5895.https://doi.org/10.1016/j.ceramint.2020.11.002
- Wang H., Wang L., Lin J., Yang J., Wu F., Li L., Chen R. Structural and Electrochemical Characteristics of Hierarchical Li4Ti5O12 as High-Rate Anode Material for Lithium-Ion Batteries // Electrochim. Acta. 2021. V. 368. P. 137470. https://doi.org/10.1016/j.electacta.2020.137470
- Zhang Q., Verde M.G., Seo J.K., Li X., Meng Y.S. Structural and Electrochemical Properties of Gd-Doped Li4Ti5O12 as Anode Material with Improved Rate Capability for Lithium-Ion Batteries // J. Power Sources. 2015. V. 280. P. 355–362.https://doi.org/10.1016/j.jpowsour.2015.01.124
- Wu Z.L., Xu G.B., Wei X.L., Yang W. Highly-Crystalline Lanthanide Doped and Carbon Encapsulated Li4Ti5O12 Nanosheets as an Anode Material for Sodium Ion Batteries with Superior Electrochemical Performance // Electrochim. Acta. 2016. V. 207. P. 275–283. https://doi.org/10.1016/j.electacta.2016.04.136
- Li Y., Gao H., Yang W. Enhancements of the Structures and Electrochemical Performances of Li4Ti5O12 Electrodes by Doping with Non-Metallic Elements // Electrochim. Acta. 2022. V. 409. P. 139993.https://doi.org/10.1016/j.electacta.2022.139993
- Ye Z., Zhong F., Chen Y., Zou Z., Jiang C. Unique CNTs-Chained Li4Ti5O12 Nanoparticles as Excellent High Rate Anode Materials for Li-Ion Capacitors // Ceram. Int. 2022. V. 48. P. 20237–20244.https://doi.org/10.1016/j.ceramint.2022.03.303
- Lim J., Choi E., Mathew V., Kim D., Ahn D., Gim J., Kang S.H., Kim J. Enhanced High-Rate Performance of Li4Ti5O12 Nanoparticles for Rechargeable Li-Ion Batteries // J. Electrochem. Soc. 2011. V. 158. № 3. P. A275–A280. https://doi.org/10.1149/1.3527983
- Zhang H., Yun Zhang H., Huang L., Zhou Z., Wang J., Liu H., Wu H. Hierarchical Carambola-Like Li4Ti5O12-TiO2 Composites as Advanced Anode Materials for Lithium-Ion Batteries // Electrochim. Acta. 2016. V. 195. P. 124-133.https://doi.org/10.1016/j.electacta.2016.02.092
- Zhu K., Gao H., Hu G., Liu M., Wang H. Scalable Synthesis of Hierarchical Hollow Li4Ti5O12 Microspheres Assembled by Zigzag-Like Nanosheets for High Rate Lithium-Ion Batteries // J. Power Sources. 2017. V. 340. P. 263–272.https://doi.org/10.1016/j.jpowsour.2016.11.074
- Xing L.-L., Huang K.-J., Sheng-Xi Cao S.-X., Pang H. Chestnut Shell-Like Li4Ti5O12 Hollow Spheres for High-Performance Aqueous Asymmetric Supercapacitors // Chem. Eng. J. 2018. V. 332. P. 253–259. https://doi.org/10.1016/j.cej.2017.09.084
- Qin W., Liu H., An J., Wen X. Enhanced Li-Ion Battery Performance of TiO2 Nanoparticle-Loaded Li4Ti5O12 Nanosheet Anode Using Carbon Coated Copper as Current Collector // J. Power Sources. 2020. V. 479. P. 229090. https://doi.org/10.1016/j.jpowsour.2020.229090
- Kim J.-G., Shi D., Park M.-S., Jeong G., Heo Y.-U., Seo M., Kim Y.-J., Kim J.H., Dou S.X. Controlled Ag-Driven Superior Rate-Capability of Li4Ti5O12 Anodes for Lithium Rechargeable Batteries // Nano Res. 2013. V. 6. P. 365–372.https://doi.org/10.1007/s12274-013-0313-y
- Wang Y., Zhou A., Dai X., Feng L., Li J., Li J. Solid-State Synthesis of Submicron-Sized Li4Ti5O12/Li2TiO3 Composites with Rich Grain Boundaries for Lithium Ion Batteries // J. Power Sources. 2014. V. 266. P. 114–120. https://doi.org/10.1016/j.jpowsour.2014.05.002
- Yan B.-L., Wang J., Jun D., Song Q.-S., Mu W.-N., Yang T., Mao X.-H., Meng W.-W. Improved Electrochemical Performance for Lithium-Ion Dissolving Synthesis of Nanocomposite with Prominent Specific Surface Area // Electrochim. Acta. 2022. V. 403. P. 139625. https://doi.org/10.1016/j.electacta.2021.139625
- Zhang E., Zhang H. Hydrothermal Synthesis of -Li4Ti5O12-TiO2 Composites and Li4Ti5O12 and Their Applications in Lithium-Ion Batteries // Ceram. Int. 2019. V. 45. P. 7419–7426.https://doi.org/10.1016/j.ceramint.2019.01.030
- Kozlova A., Uvarov N., Sharafutdinov M., Gerasimov E., Mateyshina Y. In Situ Study of Solid-State Synthesis of Li4Ti5O12–Li2TiO3 and Li4Ti5O12–TiO2 Composites // J. Solid State Chem. 2022. V. 313. P. 123302. https://doi.org/10.1016/j.jssc.2022.123302
- Kozlova A., Uvarov N., Ulihin A. Transport and Electrochemical Properties of Li4Ti5O12-Li2TiO3 and Li4Ti5O12-TiO2 Composites // Materials. 2022. V. 15. P. 6079. https://doi.org/10.3390/ma15176079
- Mukai K., Kato Y., Nakano H. Understanding the Zero-Strain Lithium Insertion Scheme of Li[Li1/3Ti5/3]O4: Structural Changes at Atomic Scale Clarified by Raman Spectroscopy // J. Phys. Chem. C. 2014. V. 118. P. 2992−2999. https://doi.org/10.1021/jp412196v
Supplementary files
