Synthesis and Low-Temperature Thermodynamic Functions of Platinum Ditelluride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we report the synthesis of crystalline platinum ditelluride, PtTe2, a synthetic analog of the mineral moncheite, and its thermodynamic properties. Using the isobaric heat capacity of PtTe2 determined in the range 2–305 K by the relaxation and adiabatic calorimetry methods, we have evaluated its standard thermodynamic functions: entropy, enthalpy increment, and reduced Gibbs energy. The following parameters have been obtained for PtTe2 at 298.15 K: 
 = 75.11 ± 0.15 J/(K mol), S° = 121.5 ± 0.2 J/(K mol), Н°(298.15 K) − Н°(0) = 16.69 ± 0.03 kJ/mol, and Ф° = 65.55 ± 0.13 J/(K mol). Using data in the literature and handbooks, we have estimated the standard Gibbs energy of formation of PtTe2: ΔfG°(PtTe2, cr, 298.15) = –75.4 ± 0.8 kJ/mol. Fractal analysis of the heat capacity data indicates that PtTe2 has a layered structure and that its Debye temperature is 250 K.

About the authors

D. A. Chareev

Dubna State University; Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences; Institute of Physics and Technology, Yeltsin Federal University; Kazan (Volga Region) Federal University

Email: d.chareev@gmail.com
141982, Dubna, Moscow oblast, Russia; 142432, Chernogolovka, Noginskii raion, Moscow oblast, Russia; 620002, Yekaterinburg, Russia; 420008, Kazan, Tatarstan, Russia

A. V. Tyurin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: fomina@igic.ras.ru
119991, Moscow, Russia

N. A. Polotnyanko

Dubna State University

Email: d.chareev@gmail.com
141982, Dubna, Moscow oblast, Russia

P. V. Chareeva

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: d.chareev@gmail.com
119017, Moscow, Russia

References

  1. Полотнянко Н.А., Тюрин А.В., Чареев Д.А., Хорошилов А.В. Теплоемкость и термодинамические функции PdS // Неорган. материалы. 2020. Т. 56. № 7. С. 719‒726. https://doi.org/10.31857/S0002337X20070131
  2. Тюрин А.В., Полотнянко Н.А., Тестов Д.С., Чареев Д.А., Хорошилов А.В. Термодинамические функции дисульфида платины PtS2 в широком интервале температур // Неорган. материалы. 2020. Т. 56. № 2. С. 125‒134. https://doi.org/10.31857/S0002337X20020177
  3. Song S., Oh I., Jang S., Yoon A., Han J., Lee Z., Yoo J.W., Kwon S.Y. Air-stable van der Waals PtTe2 Conductors with High Current-Carrying Capacity and Strong Spin-Orbit Interaction // iScience. 2022. V. 13. № 25(11). P. 105346. PMID: 36345340; PMCID: PMC9636052https://doi.org/10.1016/j.isci.2022.105346
  4. Lasek K., Ghorbani-Asl M., Pathirage V., Krasheninnikov A.V., Batzill M. Controlling Stoichiometry in Ultrathin van der Waals Films: PtTe2, Pt2Te3, Pt3Te4, and Pt2Te2 // ACS Nano. 2022. V. 28. № 16(6). P. 9908‒9919. Epub 2022 Jun 2. PMID: 35652695.https://doi.org/10.1021/acsnano.2c04303
  5. Chareev D.A., Evstigneeva P., Phuyal D., Man G.J., Rensmo H., Vasiliev A.N., Abdel-Hafiez M. Growth of Transition-Metal Dichalcogenides by Solvent Evaporation Technique // Cryst. Growth Design. 2020. V. 20 № 10. P. 6930‒6938.
  6. PPMS Physical Property Measurement System. Quantum Design, 2004.
  7. Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jaime M., Cooley J.C., Hults W.L., Morales L., Thoma D.J., Smith J.L., Boerio-Goates J., Woodfield B.F., Stewart G.R., Fisher R.A., Phillips N.E. Critical Examination of Heat Capacity Measurements Made on a Quantum Design Physical Property Measurement System // Cryogenics. 2003. V. 43. P. 369–378.
  8. Rosen P.F., Woodfield B.F. Standard Methods for Heat Capacity Measurements on a Quantum Design Physical Property Measurement System // J. Chem. Thermodyn. 2020. V. 141. P. 105974.
  9. http://www.physics.nist.gov/PhysRefData/Compositions
  10. Гурвич Л.В. ИВТАНТЕРМО – автоматизированная система данных о термодинамических свойствах веществ // Вестн. АН СССР. 1983. № 3. С. 54–65.
  11. Westrum E.F., Carson H.G., Gronvold F., Kjekshus A. Low Temperatureyeat Capacities and Thermodynamic Function of Some Palladium and Platinum Group Chalcogenides. II. Dichalcogenides: PtS2, PtTe2, and PdTe2 // J. Chem. Phys. 1961. V. 35. P. 1670–1676.
  12. Barin I. Thermochemical Data of Pure Substances // VCH. 1995. V. 2. 1885 p.
  13. Столярова Т.А., Осадчий Е.Г. Стандартные термохимические свойства дителлуридов палладия и платины // Геохимия. 2011. Т. 49. № 10. С. 1106–1110.
  14. Тюрин А.В., Изотов А.Д., Гавричев К.С., Зломанов В.П. Описание теплоемкости полупроводниковых соединений AIIIBVI с использованием фрактальной модели // Неорган. материалы. 2014. Т. 50. № 9. С. 979–982. https://doi.org/10.7868/S0002337X14090164
  15. Furuseth S., Selte K., Kjekshus A. Redetermined Crystal Structures of NiTe2, PdTe2, PtS2, PtSe2 and PtTe2 // Acta Chem. Scand. 1965. V. 19. № 1. P. 257.
  16. Урусов В.С., Еремин Н.Н. Кристаллохимия. Краткий курс. Часть 2. М.: Изд-во МГУ, 2005. 125 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (589KB)
3.

Download (84KB)
4.

Download (107KB)
5.

Download (185KB)
6.

Download (266KB)

Copyright (c) 2023 Д.А. Чареев, А.В. Тюрин, Н.А. Полотнянко, П.В. Чареева