Structure and Phase Formation in the Ni–Al–Co System during Self-Propagating High-Temperature Synthesis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper reports on structure and phase formation of a Ni–Al–Co based alloy prepared by self-propagating high-temperature synthesis. The maximum combustion temperature was 1020°C in argon and 913°C in vacuum. The phase composition of the synthesized alloy includes a Ni0.7Co0.3
 solid solution with a cubic (Pm
m) crystal lattice. Its microstructural constituents based on γ- and β-phases are 10–20 μm in size, and γ + β interlayers located on the interface between the γ- and β-phases are up to 1–2 μm in thickness. The alloy offers high plasticity, and its compressive strength is 451 MPa. Its low remanence, low coercive force, and high saturation magnetization indicate that the alloy is a soft magnetic material. It has a coercive force Hc = 146 Oe, remanent magnetization σr = 0.35 emu/g, and saturation magnetization σs = 36.76 emu/g.

作者简介

A. Sychev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

M. Busurina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

O. Boyarchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

P. Lazarev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

Yu. Morozov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

A. Sivakova

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

参考

  1. Kainuma R., Ise M., Jia C.-C., Ohtani H., Ishida K. Phase Equilibria in the Al-Co-Ni Alloy System // J. Phase Equilib. Diffus. 2017. V. 38. P. 630–645. https://doi.org/10.1007/s11669-017-0586-z
  2. Koneva N.A., Potekaev A.I., Nikonenko E.L., Popova N.A., Klopotov A.A., Klopotov V.D. Structure and Phase Composition of Heat-Resistant Ni–Al–Co Alloy after Annealing and Creep // Russ. Phys. J. 2019. V. 61. № 12. P. 2218–2224. https://doi.org/10.1007/s11182-019-01658-3
  3. Oikawa K., Wulff L., Iijima T., Gejima F., Ohmori T., Fujita A., Fukamichi K., Kainuma R., Ishida K. Promising Ferromagnetic Ni–Co–Al Shape Memory Alloy System // Appl. Phys. Lett. 2001. V. 79. P. 3290–3292. https://doi.org/10.1063/1.1418259
  4. Tanaka Y., Ohmori T., Oikawa K., Kainuma R., Ishida K. Ferromagnetic Co-Ni-Al Shape Memory Alloys with β + γ Two-Phase Structure // Mater. Trans. 2004. V. 45. № 2. P. 427–430. https://doi.org/10.2320/matertrans.45.427
  5. Xu Y., Kameoka S., Kishida K., Demura M., Tsai A., Hirano T. Catalytic Properties of Ni3Al Intermetallics for Methanol Decomposition // Mater. Trans. 2004. V. 45. № 11. P. 3177–3179https://doi.org/10.2320/matertrans.45.3177
  6. Kimura Y., Suzuki T., Mishima Y. Microstructure and Mechanical Properties of B2 (Co,Ni)Al Based Alloys // MRS Online Proceedings Library. 1992. V. 288. P. 697–702. https://doi.org/10.1557/PROC-288-697
  7. Kimura Y., Elmer H. Lee, Liu C.T. Microstructure, Phase Constitution and Tensile Properties of Co–Ni–Ti–Al Based Multi-Phase Alloys // Mater. Trans. 1995. V. 36. № 8. P. 1031–1040.
  8. Летников М.Н., Ломберг Б.С., Овсепян С.В. Исследование композиций системы Ni–Al–Co при разработке нового жаропрочного деформируемого интерметаллидного сплава // Научно-технический журн. “Труды ВИАМ”. 2013. № 10. С. 1.
  9. Kositsyna I.I., Zavalishin V.A. Study of Co-Ni-Al Alloys with Magnetically Controlled Shape Memory Effect // Mater. Sci. Forum. 2009. V. 635. P. 75–80. https://doi.org/10.4028/www.scientific.net/MSF.635.75
  10. Raghavan V. Al−Co−Ni (Aluminum−Cobalt−Nickel) // J. Phase Equilib. Diffus. 2006. V. 27. P. 372–380. https://doi.org/10.1007/s11669-006-0009-z
  11. Zhou Y., Nash P., Bessa S.M. et al. Phase Equilibria in the Al-Co-Ni Alloy System // J. Phase Equilib. Diffus. 2017. V. 38. P. 630–645.https://doi.org/10.1007/s11669-017-0586-z
  12. Поварова Л.Б., Филин С.А., Масленков С.Б. Фазовые равновесия с участием β-фазы в системах Ni–Al–Me (Me-Co, Fe, Mn, Cu) при 900 и 1100°C // Металлы. 1993. № 1. С. 191–205.
  13. Mishima Y., Ochiai S., Suzuki T. Lattice Parameters of Ni(γ), Ni3Al(γ') and Ni3Ga(γ') Solid Solutions with Additions of Transition and B-Subgroup Elements // Acta Metall. 1985. V. 33. № 6. P. 1161–1169. https://doi.org/10.1016/0001-6160(85)90211-1
  14. Merzhanov A.G., Borovinskaya I.P. Self-Propagating High-temperature Synthesis of Refractory Inorganic Compounds // Dokl. Akad. Nauk SSSR. 1972. V. 204. № 2. P. 366–369.
  15. Корчагин М.А., Бохонов Б.Б. Самораспространяющийся высокотемпературный синтез квазикристаллов // Физика горения и взрыва. 2004. Т. 40. № 4. С. 74–81.
  16. Alkan M., Sonmez S., Bora Derin B., Yücel O., Andreev D., Sanin V., Yukhvid V. Production of Al–Co–Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing // High Temp. Mater. Proc. 2015. V. 34. № 3. P. 275–283. https://doi.org/10.1515/htmp-2014-0052
  17. Isothermal Section at 1100°C. Fig. 4 from Al–Co–Ni Ternary Phase Diagram Evaluation. https://materials.springer.com/msi/phase-diagram/docs/sm_msi_r_10_011478_01_full_LnkDia3 https://doi.org/10.11478.1.8 (MSI Materials Science International Services GmbH, Stuttgart © 1991).
  18. Лякишев Н.П. Диаграммы состояния двойных металлических систем: Справочник / Под ред. Лякишева Н.П. М.: Машиностроение, 1996–2000.
  19. Косицын С.В., Косицына И.И., Валиуллин А.И., Катаева Н.В., Завалишин В.А. Ферромагнитные сплавы Co–Ni–Al с термоупругим мартенситным превращением // Перспективные материалы. 2005. Т. 3. С. 56–61.
  20. Valiullin A.I., Kositsin S.V., Kositsina I.I., Kataeva N.V., Zavalishin V.A. Study of Ferromagnetic Co–Ni–Al Alloys with Thermoelastic L10-Martensite // Mater. Sci. Eng. A. 2006. V. 438–440. P. 1041–1044.
  21. Mazeeva A., Kim A., Ozerskoi N. et al. Structure Evolution of Ni36Al27Co37 Alloy in the Process of Mechanical Alloying and Plasma Spheroidization // Metals. 2021. V. 11. P. 1557–1571.https://doi.org/10.3390/met11101557

补充文件

附件文件
动作
1. JATS XML
2.

下载 (262KB)
3.

下载 (118KB)
4.

下载 (77KB)
5.

下载 (1MB)
6.

下载 (1MB)
7.

下载 (1MB)
8.

下载 (999KB)
9.

下载 (109KB)

版权所有 © А.Е. Сычев, М.Л. Бусурина, О.Д. Боярченко, П.А. Лазарев, Ю.Г. Морозов, А.О. Сивакова, 2023