28SiO2-Based Isotopically Enriched Silica Fiber
- Autores: Troshin O.Y.1,2, Bulanov A.D.1,2, Salgansky M.Y.1, Timofeev O.V.1,2, Komshina M.E.1,2, Shumovskaya K.F.1, Tomashuk A.L.3, Kashaykin P.F.3, Drozdov M.N.4
-
Afiliações:
- Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences
- Lobachevsky State University (National Research University)
- Dianov Fiber Optics Research Center, Prokhorov General Physics Institute, Russian Academy of Sciences
- Institute for Physics of Microstructures, Russian Academy of Sciences
- Edição: Volume 59, Nº 6 (2023)
- Páginas: 618-623
- Seção: Articles
- URL: https://kld-journal.fedlab.ru/0002-337X/article/view/668230
- DOI: https://doi.org/10.31857/S0002337X23060143
- EDN: https://elibrary.ru/EVMXMX
- ID: 668230
Citar
Resumo
A silica fiber preform with a reflective cladding and 28SiO2-based isotopically enriched core has been produced by modified chemical vapor deposition (MCVD) using high-purity 28Si-enriched silicon tetrachloride. We have measured the refractive index profile across the preform. Using secondary ion mass spectrometry, we have obtained distribution profiles of the silicon isotopes across the preform. The 28Si content of the silicon in the core has been determined to be at a level of 99.9%. The preform has been drawn into fiber with a reflective cladding and a 28SiO2-based isotopically enriched core. The optical loss in the fiber at wavelengths from 900 to 1750 nm has been determined to be 1–2 dB/km. We have measured the radiation-induced loss in the silica fiber with the 28SiO2 isotopically enriched core at a gamma dose rate of 3.2 Gy/s and wavelengths of 1.31 and 1.55 μm.
Palavras-chave
Sobre autores
O. Troshin
Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences; Lobachevsky State University (National Research University)
Email: troshin@ihps-nnov.ru
603951, Nizhny Novgorod, Russia; 603022, Nizhny Novgorod, Russia
A. Bulanov
Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences; Lobachevsky State University (National Research University)
Email: kaplunov.ia@tversu.ru
603951, Nizhny Novgorod, Russia; 603022, Nizhny Novgorod, Russia
M. Salgansky
Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences
Email: troshin@ihps-nnov.ru
603951, Nizhny Novgorod, Russia
O. Timofeev
Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences; Lobachevsky State University (National Research University)
Email: troshin@ihps-nnov.ru
603951, Nizhny Novgorod, Russia; 603022, Nizhny Novgorod, Russia
M. Komshina
Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences; Lobachevsky State University (National Research University)
Email: troshin@ihps-nnov.ru
603951, Nizhny Novgorod, Russia; 603022, Nizhny Novgorod, Russia
K. Shumovskaya
Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences
Email: troshin@ihps-nnov.ru
603951, Nizhny Novgorod, Russia
A. Tomashuk
Dianov Fiber Optics Research Center, Prokhorov General Physics Institute, Russian Academy of Sciences
Email: troshin@ihps-nnov.ru
119333, Moscow, Russia
P. Kashaykin
Dianov Fiber Optics Research Center, Prokhorov General Physics Institute, Russian Academy of Sciences
Email: troshin@ihps-nnov.ru
119333, Moscow, Russia
M. Drozdov
Institute for Physics of Microstructures, Russian Academy of Sciences
Autor responsável pela correspondência
Email: troshin@ihps-nnov.ru
603950, Nizhny Novgorod, Russia
Bibliografia
- Brown T.G., Painter B.A. Low Loss Isotopic Optical Waveguides: Пат. США № 2003/0002834. Опубл. 02.01.2003.
- Heitmann W., Klein K.F. Glass for Optical Waveguides or the Like: Пат. США № 6490399. Опубл. 03.12.2002.
- Allan D.C., Brown J.T., Сhacon L.C. et al. Isotopically Altered Optical Fiber: Пат.США № 20030128955. Опубл. 10.07.2003.
- Плеханов В.Г. Изотопическая инженерия // Успехи физ. наук. 2000. Т. 170. № 11. С. 1245–1252. https://doi.org/10.3367/UFNr.0170.200011i.1245
- Журавлева Л.М., Плеханов В.Г. Способ изготовления фотонно-кристаллического волокна: Пат. РФ 2401813. Опубл. 20.10.2010.
- Трошин О.Ю., Буланов А.Д., Кириллов Ю.П., Потапов А.М., Отопкова П.А., Комшина М.Е., Игнатова К.Ф., Ермаков А.А. Получение высокочистого тетрахлорида кремния-28 из тетрафторида кремния-28 // Неорган. материалы. 2022. Т. 58. № 8. С. 884–890.
- Отопкова П.А., Потапов А.М., Сучков А.И., Буланов А.Д., Лашков А.Ю., Курганова А.Е. Изотопный анализ высокообогащенного кристаллического 28Si и исходного 28SiF4 методом масс-спектрометрии высокого разрешения с индуктивно связанной плазмой // Масс-спектрометрия. 2018. Т. 15. № 3. С. 209–215.
- Гурьянов А.Н., Салганский М.Ю., Хопин В.Ф., Косолапов А.Ф., Семенов С.Л. Высокоапертурные световоды на основе кварцевого стекла, легированного фтором // Неорган. материалы. 2009. Т. 45. № 7. С. 887−891.
- Дроздов М.Н., Дроздов Ю.Н., Пряхин Д.А., Шашкин В.И., Сенников П.Г., Поль Х.-Й. Количественный безэталонный анализ концентрации изотопов 28,29,30Si в кремнии методом ВИМС на установке TOF.SIMS-5 // Изв. Российской академии наук. Сер. физ. 2010. Т. 74. № 1. С. 84–86.
- Томашук А.Л., Дворецкий Д.А., Лазарев В.А., Пнев А.Б., Карасик В.Е., Салганский М.Ю., Кашайкин П.Ф., Хопин В.Ф., Гурьянов А.Н., Дианов Е.М. Отечественные радиационно-стойкие волоконные световоды // Вестн. МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 5. С. 111–124. https://doi.org/10.18698/0236-3933-2016-5-111-124
- Kashaykin P.F., Tomashuk A.L., Salgansky M.Yu., Guryanov A.N., Dianov E.M. Anomalies and Peculiarities of Radiation-Induced Light Absorption in Pure Silica Optical Fibers at Different Temperatures // J. Appl. Phys. 2017. V. 121. P. 213104. https://doi.org/10.1063/1.4984601
Arquivos suplementares
