Optimization of R2O2Se (R = La, Gd, Y) Synthesis for the Preparation of Optical Materials
- Authors: Pomelova T.A.1, Tarasenko M.S.1, Yushina I.V.1, Malyutina-Bronskaya V.V.2, Fedorov V.E.1, Naumov N.G.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Optics, Optoelectronics, and Laser Engineering State Research and Production Corporation, 220072, Minsk, Belarus
- Issue: Vol 59, No 1 (2023)
- Pages: 14-22
- Section: Articles
- URL: https://kld-journal.fedlab.ru/0002-337X/article/view/668380
- DOI: https://doi.org/10.31857/S0002337X23010165
- EDN: https://elibrary.ru/OTWBIY
- ID: 668380
Cite item
Abstract
We have perfected processes for the synthesis of lanthanum, gadolinium, and yttrium oxyselenides by heating oxides in flowing hydrogen and selenium vapor. The optimal selenidation temperature is 700°C for lanthanum, 850°C for gadolinium, and 900°C for yttrium. Subsequent annealing of the materials in flowing hydrogen at 1000°C makes it possible to remove trace levels of amorphous selenium and impurity phases containing diselenide groups.
Keywords
About the authors
T. A. Pomelova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3
M. S. Tarasenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3
I. V. Yushina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3
V. V. Malyutina-Bronskaya
Optics, Optoelectronics, and Laser Engineering State Research and Production Corporation, 220072, Minsk, Belarus
Email: tarasen@niic.nsc.ru
Беларусь, 220072, Минск, пр. Независимости, 68
V. E. Fedorov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3
N. G. Naumov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Author for correspondence.
Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3
References
- Ropp R.C. The Chemistry of Artificial Lighting Devices: Lamps, Phosphors and Cathode Ray Tubes // Studies in inorganic chemistry N.Y. Elsevier, 1993.
- Shionoya S., Yen W.M., Yamamoto H. Phosphor Handbook // Laser and Optical Science and Technology / Ed. Weber M.J. Boca Raton: CRC, 2006. V. 21.
- Bugby S.L., Jambi L.K., Lees J.E. A Comparison of CsI: Tl and GOS in a Scintillator-CCD Detector for Nuclear Medicine Imaging // J. Instrum. 2016. V. 11. P. P09009. https://doi.org/10.1088/1748-0221/11/09/p09009
- Hussey D.S., LaManna J.M., Baltic E., Jacobson D.L. Neutron Imaging Detector with 2 μm Spatial Resolution Based on Event Reconstruction of Neutron Capture in Gadolinium Oxysulfide Scintillators // Nucl. Instrum. Methods Phys. Res., Sect. A. 2017. V. 866. P. 9–12. https://doi.org/10.1016/j.nima.2017.05.035
- Jiang X.F., Xiu Q.L., Zhou J.R., Yang J.Q., Tan J.H., Yang W.Q., Zhang L.J., Xia Y.G., Zhou X.J., Zhou J.J., Zhu L., Teng H.Y., Yang G.A., Song Y.S., Sun Z.J., Chen Y.B. Study on the Neutron Imaging Detector with High Spatial Resolution at China Spallation Neutron Source // Nucl. Eng. Technol. 2021. V. 53. № 6. P. 1942–1946. https://doi.org/10.1016/j.net.2020.12.009
- Kertzscher G., Beddar S. Inorganic Scintillation Detectors Based on Eu-Activated Phosphors for Ir-192 Brachytherapy // Phys. Med. Biol. 2017. V. 62. № 12. P. 5046–5075. https://doi.org/10.1088/1361-6560/aa716e
- Tisseur D., Eck D., Estre N., Kistler M., Payan E., Tamagno L. Detector Upgrade for Fast MeV X-Ray Imaging for Severe Accidents Experiments // IEEE Trans. Nucl. Sci. 2020. V. 67. № 7. P. 1715–1721. https://doi.org/10.1109/tns.2020.2995969
- Yoneyama A., Baba R., Kawamoto M. Quantitative Analysis of the Physical Properties of CsI, GAGG, LuAG, CWO, YAG, BGO, and GOS Scintillators Using 10-, 20- and 34-keV Monochromated Synchrotron Radiation // Opt. Mater. Express. 2021. V. 11. № 2. P. 398–411. https://doi.org/10.1364/ome.409161
- Santelli J., Lechevallier S., Baaziz H., Vincent M., Martinez C., Mauricot R., Parini A., Verelst M., Cussac D. Multimodal Gadolinium Oxysulfide Nanoparticles: a Versatile Contrast Agent for Mesenchymal Stem Cell Labeling // Nanoscale. 2018. V. 10. № 35. P. 16775–16786. https://doi.org/10.1039/c8nr03263g
- Jiao J.X., Liu Y.W., Wang H., Yin X.M., Xing M.M., Luo X.X., Tian Y. Enhancing Upconversion Luminescence and Thermal Sensing Properties of Er/Yb Co-Doped Oxysulfide Core-Shell Nanocrystals // J. Am. Ceram. Soc. 2021. V. 104. № 2. P. 985–994. https://doi.org/10.1111/jace.17509
- Larquet C., Klein Y., Hrabovsky D., Gauzzi A., Sanchez C., Carenco S. Tunable Magnetic Properties of (Gd,Ce)2O2S Oxysulfide Nanoparticles // Eur. J. Inorg. Chem. 2019. № 6. P. 762–765. https://doi.org/10.1002/ejic.201801466
- Huang J., Tang Z.Y., Guo M., Wang Y., Wang Z.L., Wu Z., Zhang P.B. Incorporation of Gadolinium Oxide and Gadolinium Oxysulfide Microspheres: MRI/CT Monitoring and Promotion of Osteogenic/Chondrogenic Differentiation for Bone Implants // Chemnanomat. 2020. V. 6. № 12. P. 1819–1832. https://doi.org/10.1002/cnma.202000476
- Белая С.В., Баковец В.В., Рахманова М.И., Максимовский Е.А., Юшина И.В., Шаяпов В.Р., Корольков И.В. Пленки твердых растворов (Gd1–xTbx)2O2S, полученные сульфидированием оксидов в парах NH4SCN, и их оптические свойства // Неорган. материалы. 2020. Т. 56. № 8. С. 882–892. https://doi.org/10.31857/S0002337X20080035
- Knoll G.F. Radiation Detection and Measurement / 4 изд. N.Y.: Wiley, 2010.
- Тарасенко М.С., Рядун А.А., Оразов Ж.К., Помелова Т.А., Залесский В.Б., Малютина-Бронская В.В., Федоров В.Е., Wang H.-Ch., Наумов Н.Г. Определение концентрации тушения фотолюминесценции и квантовых выходов твердых растворов (Y1–xPrx)2O2Se // Неорган. материалы. 2021. Т. 57. № 8. С. 872–877. https://doi.org/10.31857/S0002337X21080315
- Tarasenko M.S., Kiryakov A.S., Ryadun A., Kuratieva N.V., Plyusnin P.E., Naumov N.G. Y2O2Se as a Potential Matrix for Optical Materials: A Novel Preparation Method and Optical Properties // Mater. Today Commun. 2019. V. 21. P. 10. https://doi.org/10.1016/j.mtcomm.2019.100665
- Tarasenko M.S., Kiryakov A.S., Ryadun A.A., Kuratieva N.V., Malyutina-Bronskaya V.V., Fedorov V.E., Wang H.-C., Naumov N.G. Facile Synthesis, Structure, and Properties of Gd2O2Se // J. Solid State Chem. 2022. V. 312. P. 123224. https://doi.org/10.1016/j.jssc.2022.123224
- Супоницкий Ю.Л., Елисеев А.А., Кузьмичева Г.М. Оксосульфиды редкоземельных элементов // Успехи химии. 1988. Т. 57. № 3. С. 367–384.
- Larquet C., Carenco S. Metal Oxysulfides: From Bulk Compounds to Nanomaterials // Front. Chem. 2020. V. 8. P. 179. https://doi.org/10.3389/fchem.2020.00179
- Eick H.A. The Crystal Structure and Lattice Parameters of Some Rare Earth Mono-Seleno Oxides // Acta Crystallogr. 1960. V. 13. № 2. P. 161. https://doi.org/0.1107/S0365110X60000339
- Guittard M., Flahaut J., Domange L. The Complete Series of Oxyselenides of the Rare-Earths and Y // Acta Crystallogr. 1966. V. 21. № 5. P. 832. https://doi.org/10.1107/S0365110X66003967
- Dernier P.D., Bucher E., Longinotti L.D. Temperature Induced Symmetry Transformation in the Th3P4 type Compounds La3S4, La3Se4, Pr3S4 and Pr3Se4 // J. Solid State Chem. 1975. V. 15. № 2. P. 203–207. https://doi.org/10.1016/0022-4596(75)90247-9
- Dugue J., Adolphe C., Khodadad P. Structure Cristalline de L’oxyséléniure de Lanthane La4O4Se3 // Acta Crystallogr., Sect. B. 1970. № 26. P. 1627–1628. https://doi.org/10.1107/S0567740870004582
- Strobel S., Choudhury A., Dorhout P.K., Lipp C., Schleid T. Rare-Earth Metal(III) Oxide Selenides M4O4Se[Se2] (M = La, Ce, Pr, Nd, Sm) with Discrete Diselenide Units: Crystal Structures, Magnetic Frustration, and Other Properties // Inorg. Chem. 2008. V. 47. № 11. P. 4936–4944. https://doi.org/10.1021/ic800233c
- Mehta S.K., Chaudhary S., Kumar S., Bhasin K.K., Torigoe K., Sakai H., Abe M. Surfactant Assisted Synthesis and Spectroscopic Characterization of Selenium Nanoparticles in Ambient Conditions // Nanotechnology. 2008. V. 19. № 29. P. 295601. https://doi.org/10.1088/0957-4484/19/29/295601
- Van Overschelde O., Guisbiers G., Snyders R. Green Synthesis of Selenium Nanoparticles by Excimer Pulsed Laser Ablation in Water // APL Mater. 2013. V. 1. № 4. P. 042114. https://doi.org/10.1063/1.4824148
- Kubelka P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I // J. Opt. Soc. Am. 1948. V. 38. № 5. P. 448–457. https://doi.org/10.1364/JOSA.38.000448
- Yannopoulos S.N., Andrikopoulos K.S. Raman Scattering Study on Structural and Dynamical Features of Noncrystalline Selenium // J. Chem. Phys. 2004. V. 121. № 10. P. 4747–4758. https://doi.org/10.1063/1.1780151
- Patterson A.L. The Scherrer Formula for X-Ray Particle Size Determination // Phys. Rev. 1939. V. 56. P. 978–982. https://doi.org/10.1103/PhysRev.56.978
Supplementary files
