Optimization of R2O2Se (R = La, Gd, Y) Synthesis for the Preparation of Optical Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have perfected processes for the synthesis of lanthanum, gadolinium, and yttrium oxyselenides by heating oxides in flowing hydrogen and selenium vapor. The optimal selenidation temperature is 700°C for lanthanum, 850°C for gadolinium, and 900°C for yttrium. Subsequent annealing of the materials in flowing hydrogen at 1000°C makes it possible to remove trace levels of amorphous selenium and impurity phases containing diselenide groups.

About the authors

T. A. Pomelova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3

M. S. Tarasenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3

I. V. Yushina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3

V. V. Malyutina-Bronskaya

Optics, Optoelectronics, and Laser Engineering State Research and Production Corporation, 220072, Minsk, Belarus

Email: tarasen@niic.nsc.ru
Беларусь, 220072, Минск, пр. Независимости, 68

V. E. Fedorov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3

N. G. Naumov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Author for correspondence.
Email: tarasen@niic.nsc.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 3

References

  1. Ropp R.C. The Chemistry of Artificial Lighting Devices: Lamps, Phosphors and Cathode Ray Tubes // Studies in inorganic chemistry N.Y. Elsevier, 1993.
  2. Shionoya S., Yen W.M., Yamamoto H. Phosphor Handbook // Laser and Optical Science and Technology / Ed. Weber M.J. Boca Raton: CRC, 2006. V. 21.
  3. Bugby S.L., Jambi L.K., Lees J.E. A Comparison of CsI: Tl and GOS in a Scintillator-CCD Detector for Nuclear Medicine Imaging // J. Instrum. 2016. V. 11. P. P09009. https://doi.org/10.1088/1748-0221/11/09/p09009
  4. Hussey D.S., LaManna J.M., Baltic E., Jacobson D.L. Neutron Imaging Detector with 2 μm Spatial Resolution Based on Event Reconstruction of Neutron Capture in Gadolinium Oxysulfide Scintillators // Nucl. Instrum. Methods Phys. Res., Sect. A. 2017. V. 866. P. 9–12. https://doi.org/10.1016/j.nima.2017.05.035
  5. Jiang X.F., Xiu Q.L., Zhou J.R., Yang J.Q., Tan J.H., Yang W.Q., Zhang L.J., Xia Y.G., Zhou X.J., Zhou J.J., Zhu L., Teng H.Y., Yang G.A., Song Y.S., Sun Z.J., Chen Y.B. Study on the Neutron Imaging Detector with High Spatial Resolution at China Spallation Neutron Source // Nucl. Eng. Technol. 2021. V. 53. № 6. P. 1942–1946. https://doi.org/10.1016/j.net.2020.12.009
  6. Kertzscher G., Beddar S. Inorganic Scintillation Detectors Based on Eu-Activated Phosphors for Ir-192 Brachytherapy // Phys. Med. Biol. 2017. V. 62. № 12. P. 5046–5075. https://doi.org/10.1088/1361-6560/aa716e
  7. Tisseur D., Eck D., Estre N., Kistler M., Payan E., Tamagno L. Detector Upgrade for Fast MeV X-Ray Imaging for Severe Accidents Experiments // IEEE Trans. Nucl. Sci. 2020. V. 67. № 7. P. 1715–1721. https://doi.org/10.1109/tns.2020.2995969
  8. Yoneyama A., Baba R., Kawamoto M. Quantitative Analysis of the Physical Properties of CsI, GAGG, LuAG, CWO, YAG, BGO, and GOS Scintillators Using 10-, 20- and 34-keV Monochromated Synchrotron Radiation // Opt. Mater. Express. 2021. V. 11. № 2. P. 398–411. https://doi.org/10.1364/ome.409161
  9. Santelli J., Lechevallier S., Baaziz H., Vincent M., Martinez C., Mauricot R., Parini A., Verelst M., Cussac D. Multimodal Gadolinium Oxysulfide Nanoparticles: a Versatile Contrast Agent for Mesenchymal Stem Cell Labeling // Nanoscale. 2018. V. 10. № 35. P. 16775–16786. https://doi.org/10.1039/c8nr03263g
  10. Jiao J.X., Liu Y.W., Wang H., Yin X.M., Xing M.M., Luo X.X., Tian Y. Enhancing Upconversion Luminescence and Thermal Sensing Properties of Er/Yb Co-Doped Oxysulfide Core-Shell Nanocrystals // J. Am. Ceram. Soc. 2021. V. 104. № 2. P. 985–994. https://doi.org/10.1111/jace.17509
  11. Larquet C., Klein Y., Hrabovsky D., Gauzzi A., Sanchez C., Carenco S. Tunable Magnetic Properties of (Gd,Ce)2O2S Oxysulfide Nanoparticles // Eur. J. Inorg. Chem. 2019. № 6. P. 762–765. https://doi.org/10.1002/ejic.201801466
  12. Huang J., Tang Z.Y., Guo M., Wang Y., Wang Z.L., Wu Z., Zhang P.B. Incorporation of Gadolinium Oxide and Gadolinium Oxysulfide Microspheres: MRI/CT Monitoring and Promotion of Osteogenic/Chondrogenic Differentiation for Bone Implants // Chemnanomat. 2020. V. 6. № 12. P. 1819–1832. https://doi.org/10.1002/cnma.202000476
  13. Белая С.В., Баковец В.В., Рахманова М.И., Максимовский Е.А., Юшина И.В., Шаяпов В.Р., Корольков И.В. Пленки твердых растворов (Gd1–xTbx)2O2S, полученные сульфидированием оксидов в парах NH4SCN, и их оптические свойства // Неорган. материалы. 2020. Т. 56. № 8. С. 882–892. https://doi.org/10.31857/S0002337X20080035
  14. Knoll G.F. Radiation Detection and Measurement / 4 изд. N.Y.: Wiley, 2010.
  15. Тарасенко М.С., Рядун А.А., Оразов Ж.К., Помелова Т.А., Залесский В.Б., Малютина-Бронская В.В., Федоров В.Е., Wang H.-Ch., Наумов Н.Г. Определение концентрации тушения фотолюминесценции и квантовых выходов твердых растворов (Y1–xPrx)2O2Se // Неорган. материалы. 2021. Т. 57. № 8. С. 872–877. https://doi.org/10.31857/S0002337X21080315
  16. Tarasenko M.S., Kiryakov A.S., Ryadun A., Kuratieva N.V., Plyusnin P.E., Naumov N.G. Y2O2Se as a Potential Matrix for Optical Materials: A Novel Preparation Method and Optical Properties // Mater. Today Commun. 2019. V. 21. P. 10. https://doi.org/10.1016/j.mtcomm.2019.100665
  17. Tarasenko M.S., Kiryakov A.S., Ryadun A.A., Kuratieva N.V., Malyutina-Bronskaya V.V., Fedorov V.E., Wang H.-C., Naumov N.G. Facile Synthesis, Structure, and Properties of Gd2O2Se // J. Solid State Chem. 2022. V. 312. P. 123224. https://doi.org/10.1016/j.jssc.2022.123224
  18. Супоницкий Ю.Л., Елисеев А.А., Кузьмичева Г.М. Оксосульфиды редкоземельных элементов // Успехи химии. 1988. Т. 57. № 3. С. 367–384.
  19. Larquet C., Carenco S. Metal Oxysulfides: From Bulk Compounds to Nanomaterials // Front. Chem. 2020. V. 8. P. 179. https://doi.org/10.3389/fchem.2020.00179
  20. Eick H.A. The Crystal Structure and Lattice Parameters of Some Rare Earth Mono-Seleno Oxides // Acta Crystallogr. 1960. V. 13. № 2. P. 161. https://doi.org/0.1107/S0365110X60000339
  21. Guittard M., Flahaut J., Domange L. The Complete Series of Oxyselenides of the Rare-Earths and Y // Acta Crystallogr. 1966. V. 21. № 5. P. 832. https://doi.org/10.1107/S0365110X66003967
  22. Dernier P.D., Bucher E., Longinotti L.D. Temperature Induced Symmetry Transformation in the Th3P4 type Compounds La3S4, La3Se4, Pr3S4 and Pr3Se4 // J. Solid State Chem. 1975. V. 15. № 2. P. 203–207. https://doi.org/10.1016/0022-4596(75)90247-9
  23. Dugue J., Adolphe C., Khodadad P. Structure Cristalline de L’oxyséléniure de Lanthane La4O4Se3 // Acta Crystallogr., Sect. B. 1970. № 26. P. 1627–1628. https://doi.org/10.1107/S0567740870004582
  24. Strobel S., Choudhury A., Dorhout P.K., Lipp C., Schleid T. Rare-Earth Metal(III) Oxide Selenides M4O4Se[Se2] (M = La, Ce, Pr, Nd, Sm) with Discrete Diselenide Units: Crystal Structures, Magnetic Frustration, and Other Properties // Inorg. Chem. 2008. V. 47. № 11. P. 4936–4944. https://doi.org/10.1021/ic800233c
  25. Mehta S.K., Chaudhary S., Kumar S., Bhasin K.K., Torigoe K., Sakai H., Abe M. Surfactant Assisted Synthesis and Spectroscopic Characterization of Selenium Nanoparticles in Ambient Conditions // Nanotechnology. 2008. V. 19. № 29. P. 295601. https://doi.org/10.1088/0957-4484/19/29/295601
  26. Van Overschelde O., Guisbiers G., Snyders R. Green Synthesis of Selenium Nanoparticles by Excimer Pulsed Laser Ablation in Water // APL Mater. 2013. V. 1. № 4. P. 042114. https://doi.org/10.1063/1.4824148
  27. Kubelka P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I // J. Opt. Soc. Am. 1948. V. 38. № 5. P. 448–457. https://doi.org/10.1364/JOSA.38.000448
  28. Yannopoulos S.N., Andrikopoulos K.S. Raman Scattering Study on Structural and Dynamical Features of Noncrystalline Selenium // J. Chem. Phys. 2004. V. 121. № 10. P. 4747–4758. https://doi.org/10.1063/1.1780151
  29. Patterson A.L. The Scherrer Formula for X-Ray Particle Size Determination // Phys. Rev. 1939. V. 56. P. 978–982. https://doi.org/10.1103/PhysRev.56.978

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (155KB)
3.

Download (51KB)
4.

Download (129KB)
5.

Download (375KB)
6.

Download (71KB)
7.

Download (53KB)
8.

Download (83KB)
9.

Download (83KB)
10.

Download (1MB)

Copyright (c) 2023 Т.А. Помелова, М.С. Тарасенко, И.В. Юшина, В.В. Малютина-Бронская, В.Е. Федоров, Н.Г. Наумов