Magnetic Properties and Critical Currents of the Dy0.8Er0.2Rh3.8Ru0.2B4 and Dy0.6Er0.4Rh3.8Ru0.2B4 Superconductors

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The magnetic superconductors Dy0.8Er0.2Rh3.8Ru0.2B4 (Tc ~ 5.1 K) and Dy0.6Er0.4Rh3.8Ru0.2B4 (Tc ~ 5.8 K) have been prepared by partially substituting Er for Dy in DyRh3.8Ru0.2B4, and their χ(Т), М(B), and 
(Т) have been studied in detail. The materials have been shown to undergo an antiferromagnetic transition (at ~3 K) similar to that of the magnetic superconductor DyRh3.8Ru0.2B4. Using magnetic moment vs. magnetic field, M(B), measurements for Dy0.8Er0.2Rh3.8Ru0.2B4 and Dy0.6Er0.4Rh3.8Ru0.2B4 samples and the Bean model, we have obtained the critical current density as a function of field, jc(B), and the reduced pinning force as a function of reduced field, Fp(h), for the Er-containing materials. The superconductors with antiferromagnetic order in their magnetic subsystem (Dy0.8Er0.2Rh3.8Ru0.2B4 and Dy0.6Er0.4Rh3.8Ru0.2B4) have been shown to exhibit the largest deviation from the scaling law for h > 0.4.

Sobre autores

S. Lachenkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991, Moscow, Russia

Email: slachenkov@imet.ac.ru
Россия, 119991, Москва, Ленинский пр., 49

V. Vlasenko

Lebedev Institute of Physics, Russian Academy of Sciences, 119991, Moscow, Russia

Email: slachenkov@imet.ac.ru
Россия, 119991, Москва, Ленинский пр., 53

A. Tsvetkov

Lebedev Institute of Physics, Russian Academy of Sciences, 119991, Moscow, Russia

Email: slachenkov@imet.ac.ru
Россия, 119991, Москва, Ленинский пр., 53

V. Dement’ev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991, Moscow, Russia

Autor responsável pela correspondência
Email: slachenkov@imet.ac.ru
Россия, 119991, Москва, Ленинский пр., 49

Bibliografia

  1. Matthias B.T., Suhl H., Corenzwit E. Spin Exchange in Superconductors // Phys. Rev. Lett. 1959. V. 1. P. 92–94.
  2. Takabayashi Y., Ganin A.Y., Jeglic P. et al. The Disorder-Free Non-BCS Superconductor Cs3C60 Emerges from an Antiferromagnetic Insulator Parent State // Science. 2009. V. 323. P. 1585–1590. https://doi.org/10.1126/science.1169163
  3. Chevrel R., Sergent M., Prigent J. Sur de Nouvelles Phases Sulfurées Ternaires du Molybdène // Solid State Chem. 1971. V. 3. № 4. P. 515–519.
  4. Matthias B.T., Marezio M., Corenzwit E., Cooper A.S., Barz H.E. High-Temperature Superconductors, the First Ternary System // Science. 1972. V. 175. № 4029. P. 1465–1466.
  5. Linder J., Sudbø A. Interplay вetween Ferromagnetism and Superconductivity // Nanoscience and Engineering in Superconductivity. Berlin, Heidelberg: Springer, 2010. P. 349–388.
  6. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Особенности фазовых переходов магнитного сверхпроводника Dy0.8Y0.2Rh4B4 // Металлы. 2010. № 3. С. 79–83.
  7. Matsushita T. Flux Pinning in Superconductors. Berlin: Springer, 2007. P. 503.
  8. Шмидт В.В. Введение в физику сверхпроводников. М.: МЦНМО, 2000. С. 402.
  9. Jung S.-G., Kang J.-H., Park E. et al. Enhanced Critical Current Density in the Pressure-Induced Magnetic State of the High-Temperature Superconductor FeSe // Sci. Rep. 2015. V. 5. P. 16385. https://doi.org/10.1038/srep1638
  10. Бурханов Г.С., Лаченков С.А., Власенко В.А., Хлыбов Е.П., Гаврилкин С.Ю. Особенности магнитных свойств и критических токов сверхпроводящих боридов родия YRh4B4 и HoRh3.8Ru0.2B4 // Неорган. материалы. 2021. Т. 57. № 7. С. 720–726. https://doi.org/10.31857/S0002337X21070022
  11. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Влияние магнитной подсистемы на усиление сверхпроводимости в тройных боридах родия // ДАН. 2011. Т. 438. № 5. С. 619–622.
  12. Bean C.P. Magnetization of Hard Superconductors // Phys. Rev. Lett. 1962. V. 8. P. 250–253.
  13. Bean C.P. Magnetization of High-Field Superconductors // Rev. Mod. Phys. 1964. V. 36. P. 31–39.
  14. Ашкрофт Н., Мермин Н. Физика твердого тела Т. 2. М.: Мир, 1979. С. 422.
  15. Shaw G. Quantitative Magneto-Optical Investigation of Superconductor/ Ferromagnet Hybrid Structures // Rev. Sci. Instrum. 2018. V. 89. № 2. P. 023705.
  16. Moncton D.E., McWhan D.B., Eckert J., Shirane G., Thomlinson W. Neutron Scattering Study of Magnetic Ordering in the Reentrant Superconductor ErRh4B4 // Phys. Rev. Lett. 1977. V. 39. P. 1164–1166.
  17. Edward J.K. Scaling Laws for Flux Pinning in Hard Superconductors // J. Appl. Phys. 1973. V. 44. P. 1360–1370.
  18. Koblischka M.R., Muralidhar M. Pinning Force Scaling Analysis of Fe-Based High-Tc Superconductors // Int. J. Modern Phys. B. 2016. V. 30. № 32. P. 1630017.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (149KB)
3.

Baixar (451KB)
4.

Baixar (100KB)
5.

Baixar (66KB)
6.

Baixar (142KB)
7.

Baixar (101KB)
8.

Baixar (183KB)

Declaração de direitos autorais © С.А. Лаченков, В.А. Власенко, А.Ю. Цветков, В.А. Дементьев, 2023