Удельный коэффициент поглощения ионов Ni2+ в стеклах системы TeO2–ZnO–Bi2O3
- Авторы: Краснов М.В.1, Замятин О.А.1
-
Учреждения:
- Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского
- Выпуск: Том 60, № 3 (2024)
- Страницы: 358-363
- Раздел: Статьи
- URL: https://kld-journal.fedlab.ru/0002-337X/article/view/668506
- DOI: https://doi.org/10.31857/S0002337X24030131
- EDN: https://elibrary.ru/LKBCHL
- ID: 668506
Цитировать
Аннотация
Методом оптической спектроскопии исследовано пропускание многокомпонентных стекол системы TeO2–ZnO–Bi2O3, легированных ионами никеля(2+). В спектрах присутствуют три интенсивные полосы поглощения с максимумами при 0.43, 0.80 и 1.32 мкм. Для данной стеклообразной матрицы, содержащей заданное количество Ni2+, рассчитан удельный коэффициент поглощения, который на длине волны 0.80 мкм равен 15.9 ± 1.3 см−1/мас. % Также установлена его спектральная зависимость во всем диапазоне прозрачности стекла и оценен интегральный коэффициент поглощения в интервале волновых чисел от 3600 и до 16500 см−1, равный 10.6 ± 0.5 см−2/ppm.
Полный текст

Об авторах
М. В. Краснов
Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского
Автор, ответственный за переписку.
Email: m.v.krasnov@unn.ru
Россия, 603950, Нижний Новгород, пр. Гагарина, 23
О. А. Замятин
Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского
Email: m.v.krasnov@unn.ru
Россия, 603950, Нижний Новгород, пр. Гагарина, 23
Список литературы
- El-Mallawany R. The Optical Properties of Tellurite Glasses // J. Appl. Phys. 1992. V. 72. № 5. P. 1774–1777. https://doi.org/10.1063/1.351649
- Feng X., Shi J., Segura M., White N., Kannan P., Calvez L., Zhang X., Brilland L., Loh W. Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications // Fibers. 2013. V. 1. № 3. P. 70–81. https://doi.org/10.3390/fib1030070
- El-Mallawany R. Introduction to Tellurite Glasses // Springer Ser. Mater. Sci. P. 1–13. https://doi.org/10.1007/978-3-319-53038-3_1
- Jose R., Arai Y., Ohishi Y. Raman Scattering Characteristics of the TBSN-Based Tellurite Glass System as a New Raman Gain Medium // J. Opt. Soc. Am. B: Opt. Phys. 2007. V. 24. № 7. P. 1517. https://doi.org/10.1364/JOSAB.24.001517
- Qin G., Jose R., Ohishi Y. Design of Ultimate Gain-Flattened O–, E–, and S+ C+ L Ultrabroadband Fiber Amplifiers Using a New Fiber Raman Gain Medium // J. Lightwave Tech. 2007. V. 25. № 9. P. 2727–2738. https://doi.org/10.1109/JLT.2007.902767
- Stegeman R., Jankovic L., Kim H., Rivero C., Stegeman G., Richardson K., Delfyett P., Guo Y., Schulte A., Cardinal T. Tellurite Glasses with Peak Absolute Raman Gain Coefficients up to 30 Times That of Fused Silica // Opt. Lett. 2003. V. 28. № 13. P. 1126–1128. https://doi.org/10.1364/OL.28.001126
- Manzani D., Petruci J.F.d.S., Nigoghossian K., Cardoso A.A., Ribeiro S.J.L. A Portable Luminescent Thermometer Based on Green Up-Conversion Emission of Er3+/Yb3+ Co-Doped Tellurite Glass // Sci. Rep. 2017. V. 7. P. 41596. https://doi.org/10.1038/srep41596
- Murugan G.S., Fargin E., Rodriguez V., Adamietz F., Couzi M., Buffeteau T., Le Coustumer P. Temperature-Assisted Electrical Poling of TeO2–Bi2O3–ZnO Glasses for Non-Linear Optical Applications // J. Non-Cryst. Solids. 2004. V. 344. № 3. P. 158–166. https://doi.org/10.1016/j.jnoncrysol.2004.06.017
- Garcia J.A.M., Bontempo L., Gomez-Malagon L.A., Kassab L.R.P. Efficiency Boost in Si-Based Solar Cells Using Tellurite Glass Cover Layer Doped with Eu3+ And Silver Nanoparticles // Opt. Mater. 2019. V. 88. P. 155–160. https://doi.org/10.1016/j.optmat.2018.11.028
- Denker B.I., Dorofeev V.V., Galagan B.I., Koltashev V.V., Motorin S.E., Plotnichenko V.G., Sverchkov S.E. 2.3µm Laser Action in Tm3+-Doped Tellurite Glass Fiber // Laser Phys. Lett. 2019. V. 16. № 1. P. 15101. https://doi.org/10.1088/1612-202X/aaeda4
- Dorofeev V.V., Moiseev A.N., Churbanov M.F., Plotnichenko V.G., Kosolapov A.F., Dianov E.M. Characterization of High-Purity Tellurite Glasses for Fiber Optics. 2011. SOMC4. https://doi.org/10.1364/SOF.2011.SOMC4
- Zamyatin O.A., Churbanov M.F., Medvedeva J.A., Gavrin S.A., Zamyatina E.V., Plekhovich A.D. Glass-Forming Region and Optical Properties of The TeO2–ZnO–NiO System // J. Non-Cryst. Solids. 2018. V. 479. P. 29–41. https://doi.org/10.1016/j.jnoncrysol.2017.10.005
- Замятин О.А., Чурбанов М.Ф., Плотниченко В.Г., Сибиркин А.А., Горева И.Г. Удельный коэффициент поглощения никеля в стекле (TeO2)0.80(MoO3)0.20 // Неорган. материалы. 2015. Т. 51. № 3. C. 328–332. https://doi.org/10.7868/S0002337X15030185
- Zannoni E., Cavalli E., Toncelli A., Tonelli M., Bettinelli M. Optical Spectroscopy of Ca3Sc2Ge3O12:Ni2+ // J. Phys. Chem. Solids. 1999. V. 60. № 4. P. 449–455. https://doi.org/10.1016/S0022-3697(98)00314-X
- Knowles A., Burgess C. Practical Absorption Spectrometry. Dordrecht: Springer Netherlands, 1984.
- Weyl W.A. Coloured Glasses: Society of Glass Technology, 1951.
- Lakshminarayana G., Yang H., Qiu J. Photoluminescence of Pr3+-, Nd3+- and Ni2+-doped TeO2–ZnO–WO3–TiO2–Na2O Glasses // J. Alloys Compd. 2009. V. 475. № 1–2. P. 569–576. https://doi.org/10.1016/j.jallcom.2008.07.083
- Oyamada R., Kishioka A., Sumi K. Optical Absorption Spectra of Ni2+ Ions and IR Spectra in (100−x)(PbO·GeO2)·xR2O(R=Mg,Ca,Sr,Ba) Glasses // J. Non-Cryst. Solids. 1987. V. 95–96. P. 709–716. https://doi.org/10.1016/S0022-3093(87)80672-5
- Scultz P.C. Optical Absorption of the Transition Elements in Vitreous Silica // J. Am. Ceram. Soc. 1974. V. 57. № 7. P. 309–313. https://doi.org/10.1111/j.1151-2916.1974.tb10908.x
- Newns G.R., Pantelis P., Wilson J.L., Uffen R.W.J., Worthington R. Absorption Losses in Glasses and Glass Fibre Waveguides // Opto-electronics. 1973. V. 5. № 4. P. 289–296. https://doi.org/10.1007/BF02057128
- Whitehouse C.R., Balchin A.A. Optical Absorption of Transition Metals in Alkali Lime Germanosilicate Glasses // J. Mater. Sci. 1979. V. 14. № 10. P. 2519–2521. https://doi.org/10.1007/BF00737045
- Снопатин Г.Е., Плотниченко В.Г., Волков С.А., Дорофеев В.В., Дианов Е.М., Чурбанов М.Ф. Коэффициент экстинкции Ni2+ в стекле (TeO2)0.78(WO3)0.22 // Неорган. материалы. 2010. Т. 46. № 8. C. 1016–1019
Дополнительные файлы
