Синтез одномерных структур триоксида молибдена и влияние водного раствора сахарозы на их обработку при гидротермальных условиях

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Одномерные слоистые структуры α-МоО3 синтезированы из пероксимолибденовых комплексов гидротермальным методом. Показано, что обработка высушенных при 80°С структур в водных растворах сахарозы при гидротермальных условиях приводит к частичному восстановлению их поверхности. Процесс восстановления сопровождается изменением длины связи М–О вследствие деформации октаэдров MoO6. Локальное пересыщение продуктов восстановления в водном растворе при гидротермальных условиях приводит к образованию новых центров кристаллизации и росту частиц гантелеподобной формы. Образующийся двухфазный наноструктурированный материал α-МоО3/МоО2 с двумя морфологическими формами не содержит углерода. Такая стратегия дизайна одномерных структур α-МоО3 может быть направлена на контроль электрохимической деградации электродов большой емкости и регулирования связанной с ней динамики деформации.

全文:

受限制的访问

作者简介

Т. Зима

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный технический университет

编辑信件的主要联系方式.
Email: zima@solid.nsc.ru
俄罗斯联邦, 630128 Новосибирск, ул. Кутателадзе, 18; 630073 Новосибирск, пр. К. Маркса, 20

Н. Уваров

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный технический университет

Email: zima@solid.nsc.ru
俄罗斯联邦, 630128 Новосибирск, ул. Кутателадзе, 18; 630073 Новосибирск, пр. К. Маркса, 20

参考

  1. Ramana C.V., Mauger A., Julien C.M. Growth, Characterization and Performance of Bulk and Nanoengineered Molybdenum Oxides for Electrochemical Energy Storage and Conversion // Prog. Cryst. Growth Charact. Mater. 2021. V. 67. Р. 100533. https://doi.org/10.1016/j.pcrysgrow.2021.100533
  2. Paste R., Ali Abbas S., Singh A., Lin H-C., Chu C.W. Oxygen-Enriched α-MoO3–x Nanobelts Suppress Lithium Dendrite Formation in Stable Lithium-Metal Batteries // J. Power Sources. 2021. V. 507. Р. 230306. https://doi.org/10.1016/j.jpowsour.2021.230306
  3. Huang C., Zhang W., Zheng W. The Debut and Spreading the Landscape for Excellent Vacancies-Promoted Electrochemical Energy Storage of Nano-Architected Molybdenum Oxides // Mater. Today Energy. 2022. V. 30. Р. 101154. https://doi.org/10.1016/j.mtener.2022.101154
  4. Bin X., Sheng M., Luo Y., Que W. Heterostructures of MoO3 Nanobelts Assembled on Delaminated V4C3Tx MXene Nanosheets for Supercapacitors with Excellent Room/High Temperature Performance // Electrochim. Acta. 2023. V. 446. Р. 142070. https://doi.org/10.1016/j.electacta.2023.142070
  5. Yan H., Song P., Zhang S., Yang Z., Wang Q. Facile Fabrication and Enhanced Gas Sensing Properties of Hierarchical MoO3 Nanostructures // RSC Adv. 2015. V. 5. P. 72728–72735. https://doi.org/10.1039/C5RA13036K
  6. Wang Y., Tang C., Ma K., Li X. Crystal Phase-Mediated Oxidative Dehydrogenation of Lactic Acid to Pyruvic Acid on MoO3 // Surf. Interfaces. 2023. V. 42. Р. 103524. https://doi.org/10.1016/j.surfin.2023.103524
  7. Wang S., Zhang Y., Ma X., Wang W., Li X., Zhang Z., Qian Y. Hydrothermal Route to Single Crystalline α-MoO3 Nanobelts and Hierarchical Structures // Solid State Commun. 2005. V. 136. P. 283–286. https://doi.org/10.1016/j.ssc.2005.08.002
  8. Zheng L., Xu Y., Jin D., Xie Y. Novel Metastable Hexagonal MoO3 Nanobelts: Synthesis, Photochromic, and Electrochromic Properties // Chem. Mater. 2009. V. 21. P. 5681–5690. https://doi.org/10.1021/cm9023887
  9. Tang K., Farooqi S. A., Wang X., Yan C. Recent Progress on Molybdenum Oxides for Rechargeable Batteries // ChemSusChem. 2019. V. 12. P. 755–771. https://doi.org/10.1002/cssc.201801860
  10. Ding J., Ali Abbas S., Hanmandlu C., Lin L., Lai C.-S. et. al Facile Synthesis of Carbon/MoO3 Nanocomposites as Stable Battery Anodes // J. Power Sources. 2017. V. 348. P. 270-280. https://doi.org/10.1016/j.jpowsour.2017.03.007
  11. Yang C., Lu H., Li C., Wang L., Wang H. Spatially-Confined Electrochemical Reactions of MoO3 Nanobelts for Reversible High Capacity: Critical Roles of Glucose // Chem. Eng. J. 2018. V. 337. P. 1–9. https://doi.org/10.1016/j.cej.2017.12.076
  12. Naresh N., Jena P., Satyanarayana N. Facile Synthesis of MoO3/rGO Nanocomposite as Anode Materials for High Performance Lithium-Ion Battery Applications // J. Alloys Compd. 2019. V. 810. Р. 151920. https://doi.org/10.1016/j.jallcom.2019.151920
  13. Sahu S. R., Rikka V. R., Haridoss P., Chatterjee A., Gopalan R., Prakash R. A Novel α-MoO3/Single-Walled Carbon Nanohorns Composite as High-Performance Anode Material for Fast-Charging Lithium-Ion Battery // Adv. Energy Mater. 2020. V. 10. Р. 2001627. https://doi.org/10.1002/aenm.202001627
  14. Zhuang R., Yao S., Shen X., Li T. Hydrothermal Synthesis of Mesoporous MoO2 Nanospheres as Sulfur Matrix for Lithium Sulfur Battery // J. Electroanal. Chem. 2019. V. 833(15). P. 441-448. https://doi.org/10.1016/j.jelechem.2018.12.009
  15. Zakharova G.S., Taschner C., Volkov V.L., Hellmann I., Klingeler R., Leonhardt A., Buchner B. MoO3-d Nanorods: Synthesis, Characterization and Magnetic Properties // Solid State Sci. 2007. V. 9. P. 1028-1032. https://doi.org/10.1016/j.solidstatesciences.2007.07.022
  16. Ivanova T., Gesheva K.A., Popkirov G., Ganchev M., Tzvetkova E. Electrochromic Behavior of Mo/W Oxides Related to Their Surface Morphology and Intercalation Process Parameters // Mater. Sci. Eng. B. 2007. V. 142. P. 126–134. https://doi.org/10.1016/j.mseb.2007.06.020
  17. Dieterle M., Mestl G. Raman Spectroscopy of Molybdenum Oxides. Part II. Resonance Raman Spectroscopic Characterization of the Molybdenum Oxides Mo4O11 and MoO2 // Phys. Chem. Chem. Phys. 2002. V. 4. P. 822–826. https://doi.org/10.1039/b107046k
  18. Zhang Q., Li X., Ma Q., Zhang Q., Bai1 H., Yi W., Liu J., Han J., Xi G. A Metallic Molybdenum Dioxide with High Stability for Surface Enhanced Raman Spectroscopy // Nat. Commun. 2017. V. 8(1). Р. 14903. https://doi.org/10.1038/ncomms1490

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM and TEM images of dried sediment synthesized by the hydrothermal method from proxy molybdenum complexes.

下载 (340KB)
3. 2. Diffractograms of dried (a) and calcined (b) one-dimensional structures before and after treatment with an aqueous sucrose solution.

下载 (315KB)
4. 3. SEM images of dried powders after hydrothermal treatment in an aqueous sucrose solution: (a) 0.1, (b) 0.2, (c) 0.4, and (d) 0.6% by weight.

下载 (482KB)
5. Fig. 4. IR (a) and Raman spectra (b) of one-dimensional structures calcined in vacuum before and after treatment in an aqueous solution with 0.2 wt.% sucrose.

下载 (208KB)
6. Fig. 5. PEMVR is an image of a product calcined in vacuum, treated with an aqueous solution with 0.2 wt.% sucrose, and Fourier diffraction patterns calculated from selected areas of this sample.

下载 (595KB)

版权所有 © Russian Academy of Sciences, 2024