Синтез и исследование спектрально-люминесцентных свойств оксифторидных стекол системы BaF2–BaO–SiO2–B2O3–Bi2O3–ZnO–Y2O3, активированных оксидами Er2O3 и Yb2O3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Разработаны и синтезированы оксифторидные стекла в системе BaF2–BaO–SiO2–B2O3–Bi2O3–ZnO–Y2O3 при различном соотношении исходных компонентов. Исследованы спектрально-люминесцентные свойства стекол, активированных оксидами Er2O3 и Yb2O3. По данным рентгенофазового анализа все образцы стекол рентгеноаморфны, определена температура стеклования (Tg). Изучение локальной структуры методом ИК-спектроскопии показало, что стекла независимо от состава содержат сложные полиборатные анионы, образованные [BO3]- и [BO4]-группами, также происходит встраивание висмута в сетку стекла с образованием Bi–O–Si-связей и сеткообразователей в виде [BiO6]-групп.

Full Text

Restricted Access

About the authors

Н. М. Кожевникова

Байкальский институт природопользования СО Российской академии наук

Author for correspondence.
Email: nicas@binm.ru
Russian Federation, ул. Сахьяновой, 6, Улан-Удэ, 670047

References

  1. Kaewako J., Boonin K. Yasaka P. et al. Optical and Luminescence Characteristics of Eu3+ Doped Zinc Bismuth Borate (ZBB) Glasses for Red Emitting Device // Mater. Res. Bull. 2015. V. 71. P. 37–41.
  2. Fedorov P.P., Luginina A.A., Popov A.I. Transparent Oxyfluoride Glass Ceramics // J. Fluorine Chem. 2015. V. 172. P. 22–50.
  3. Gugov I., Mueller M., Ruessel C. Transparent Oxyfluoride Glass Ceramics Co-Doped with Er3+ and Yb3+ – Cristallization and Upconversion Spectroscopy // J. Solid State Chem. 2011. V. 184. P. 1001–1007.
  4. Rault G., Adam J.L. Smektala F., Lucas J. Fluoride Glass Compositions for Waveguide Applications // J. Fluorine Chem. 2001. V. 110. № 2. P. 165–173.
  5. Aseev V. A., Kolobkova E.V., Nekrasova Yu. A. et al. Oxyfluoride Glasses for Red Phosphors // Mater. Phys. Mech. 2013. V. 17. P. 135–141.
  6. Polishchuk S.A., Ignat,eva L.N., Marchenco Yu.V. et al. Oxyfluoride Glasses // Glass Phys. Chem. 2011. V. 37. № 3. P. 1–20.
  7. Лойко П.А., Рачковская Г.Е., Захаревич Г.Б. и др. Новые люминесцирующие оксифторидные стекла с ионами европия и иттербия // Стекло и керамика. 2014. № 2. С. 3–6.
  8. Laczka M., Stoch L., Gorecki J. Bismuth-containing Glasses as Materials for Optoelectronics // J. Alloys Compd. 1992. V. 186. Р. 279–291.
  9. Oprea I., Hesse H., Betler K. Optical Properties of Bismuth Borate Glasses // Opt. Mater. 2004. V. 26. Р. 235–237.
  10. Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 269 с.
  11. Власов А.Г., Флоринская В.А., Венедиктов А.А. и др. Инфракрасные спектры неорганических стекол и кристаллов. Л.: Химия, 1972. 304 c.
  12. Bale S., Rahman S., Awasthi A.M., Sathe V. Role of Bi2O3 Content on Physical, Optical and Vibrational Studies in Bi2O3ZnOB2O3 Glasses // J. Alloys Compd. 2008. V. 460. P. 699–703.
  13. Yasaka P., Boonin K., Limsuwan P. et al. Physical, Structural and Luminescence Properties of ZnOBi2O3B2O3 Glass System // Appl. Mech. Mater. 2013. V. 431. P. 8–13.
  14. Левицкий И.А., Дяденко М.В., Папко Л.Ф. Получение оптических стекол на основе системы BaOLa2O3B2O3TiO2SiO2 // Стекло и керамика. 2011. № 10. С. 3–6.
  15. Князян Н.Б. Оксифторидные боросиликатные стекла // Химические и экологические технологии. 2012. Вып. 15. № 2. С. 1–23.
  16. Кузнецова Ю.О. Передача электронного возбуждения в ап-конверсионных наночастицах, содержащих редкоземельные ионы // Изв. Самарского науч. центра РАН. 2013. Т. 15. № 4. С. 112–115.
  17. Жукова Е.В., Сиротина В.А., Севостьянова Т.С. и др. Свинцовые оксифторидные боросиликатные стекла, активированные редкоземельными элементами // Успехи в химии и хим. технологии. 2016. Т. 30. № 3. С. 108–110.
  18. Овсянкин В.В., Феофилов П.П. Кооперативная сенсибилизация люминесценции в кристаллах, активированных редкоземельными ионами // Письма в ЖЭТФ. 1966. Т. 4. Вып. 11. С. 471–474.
  19. Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids // Chem. Rev. 2004. V. 104. № 1. P. 139–173.
  20. Казарян А.К. Тимофеев Ю.Р. Фок М.В. Антистоксовое преобразование излучения в люминофорах с редкоземельными ионами // Тр. ФИАН. 1986. Т. 175. С. 4–65.
  21. Крутько В.А., Рябова А.В., Комова М.Г., Волков В.В., Каргин Ю.Ф., Лощенов В.Б. Синтез и люминесценция ультрадисперсных соединений G11SiP3O26, Gd14B6Ge2O34, активированных ионами Er3+ и Yb3+ для диагностики рака // Неорган. материалы. 2013. Т. 49. № 1. С.45–51. https://doi.org/10.7868/S0002337X13010041

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Radiographs of glasses St-1 (1), St-2 (2), St-3 (3).

Download (10KB)
3. Fig. 2. IR spectra of glasses St-1 (1), St-2 (2), St-3 (3).

Download (12KB)
4. Fig. 3a. Luminescence spectra of phosphor samples based on oxyfluoride glasses St-1 (1), St-2 (2), St-3 (3) with different concentrations of activator ions.

Download (33KB)
5. Fig. 3b. Scheme of implementation of up-conversion in the Yb3+–Er3+ ion system according to data from [16].

Download (16KB)
6. Fig. 4. Energy level diagram and main nonradiative cooperative processes between Yb3+ and Er3+ ions according to [21]: 1 – 2x (2F5/2 – 2F7/2 (Yb3+) + (4I15/2 – 4I11/2, 4I11/2 – 4F7/2)/(4I15/2 – 4I11/2, 4I13/2 – 4F9/2) (Er3+), up-conversion; 2 – 4I11/2 – 4F7/2 + 4I11/2 – 4I15/2 (Er3+), up-conversion; 3 – 4S3/2 – 4I9/2 + 4I15/2 – 4I13/2 (Er3+), cross-relaxation; 4 – 4I13/2 – 4I9/2 + 4I11/2 – 4I15/2 (Er3+), up-conversion.

Download (56KB)

Copyright (c) 2024 Russian Academy of Sciences