Atmospheric-Pressure Synthesis of Titanium Carbide in an Arc Plasma Reactor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper reports on titanium carbide synthesis in an atmospheric-pressure arc plasma reactor by exposing a stoichiometric starting mixture (Ti : C ~ 1 : 1.05) to a plasma jet. The phase composition of the synthesized TiC powder has been determined as a function of the time during which the starting mixture was exposed to a thermal plasma flow and the current (40–120 A) through the electric arc plasma source. The powders obtained under optimal conditions consist of the cubic titanium carbide phase and have a broad particle size distribution, with distinct agglomerates on the order of 50–100 μm in size. It is worth noting that the surface of the agglomerates has the form of a densified perforated crust (with a pore diameter no greater that 2 μm).

Авторлар туралы

A. Gumovskaya

Tomsk State University of Architecture and Civil Engineering; National Research Tomsk Polytechnic University

Email: aag109@tpu.ru
634003, Tomsk, Russia; 634050, Tomsk, Russia

V. Shekhovtsov

Tomsk State University of Architecture and Civil Engineering

Email: shehovcov2010@yandex.ru
634003, Tomsk, Russia

A. Pak

Tomsk Polytechnic University

Email: grinko_aa@surgu.ru
Tomsk, 634050 Russia

R. Gerasimov

Tomsk State University of Architecture and Civil Engineering; National Research Tomsk Polytechnic University

Email: aag109@tpu.ru
634003, Tomsk, Russia; 634050, Tomsk, Russia

O. Volokitin

Tomsk State University of Architecture and Civil Engineering

Email: aag109@tpu.ru
634003, Tomsk, Russia

G. Mamontov

National Research Tomsk Polytechnic University

Хат алмасуға жауапты Автор.
Email: aag109@tpu.ru
634050, Tomsk, Russia

Әдебиет тізімі

  1. Bonis A. De Formation of Titanium Carbide (TiC) and TiC@C Core-Shell Nanostructures by Ultra-Short Laser Ablation of Titanium Carbide and Metallic Titanium in Liquid // J. Colloid Interface Sci. 2017. V. 489. P. 76–84. https://doi.org/10.1016/j.jcis.2016.08.078
  2. Cho D. Synthesis of Titanium Carbide–Carbon Nanofibers via Carbothermal Reduction of Titania with Carbon // Ceram. Int. 2015. V. 41. № 9. P. 10974–10979. https://doi.org/10.1016/j.ceramint.2015.05.041
  3. Dong Q. Functionalized Titanium Carbide as Novel Catalyst Support for Pd Catalyzed Electrochemical Reaction // Int. J. Hydrogen Energy. 2017. V. 42. № 5. P. 3206–3214. https://doi.org/10.1016/j.ijhydene.2016.09.217
  4. Ghidiu M. Conductive Two-Dimensional Titanium Carbide “Clay” with High Volumetric Capacitance // Nature. 2014. V. 516. P. 78–81. https://doi.org/10.1038/nature13970
  5. Ghosh S. Synthesis of Titanium Carbide Nanoparticles by Wire Explosion Process and Its Application in Carbon Dioxide Adsorption // J. Alloys Compd. 2019. V. 794. P. 645–653. https://doi.org/10.1016/j.jallcom.2019.04.299
  6. Gusev A. I. Phase Equilibria, Phases and Compounds in the TiC System // Russ. Chem. Rev. 2002. V. 71. № 6. P. 439–463. https://doi.org/10.1070/RC2002v071n06ABEH000721
  7. Kunkel C. Combining Theory and Experiment for Multitechnique Characterization of Activated CO2 on Transition Metal Carbide (001) Surfaces // J. Phys. Chem. C. 2019. V. 123. № 13. P. 7567–7576. https://doi.org/10.1021/acs.jpcc.7b12227
  8. Lin S. Y., Zhang X. Two-Dimensional Titanium Carbide Electrode with Large Mass Loading for Supercapacitor // J. Power Sources. 2015. V. 294. P. 354–359. https://doi.org/10.1016/j.jpowsour.2015.06.082
  9. Luo Y. A Long Cycle Life Asymmetric Supercapacitor Based on Advanced Nickel-Sulfide/Titanium Carbide (Mxene) Nanohybrid and MXene Electrodes // J. Power Sources. 2020. V. 450. P. 227694. https://doi.org/10.1016/j.jpowsour.2019.227694
  10. Rasaki S. A. Synthesis and Application of Nano-Structured Metal Nitrides and Carbides: A Review // Prog. Solid State Chem. 2018. V. 50. P. 1–15. https://doi.org/10.1016/j.progsolidstchem.2018.05.001
  11. Shekhovtsov V.V., Skripnikova N.K., Volokitin O.G. Phase Transitions in SiO2 Nanopowder Synthesized by Electric Arc Plasma // IEEE Trans. plasma Sci. 2021. V. 49. № 9. https://doi.org/10.1109/TPS.2021.3091138
  12. Syamsai R. Synthesis and Properties of 2D-Titanium Carbide MXene Sheets towards Electrochemical Energy Storage Applications // Ceram. Int. 2017. V. 43. № 16. P. 13119–13126. https://doi.org/10.1016/j.ceramint.2017.07.003
  13. Крылова Т.А. Коррозионная стойкость и износостойкость покрытий, полученных методом вневакуумной электронно-лучевой наплавки тугоплавких карбидов на низкоуглеродистую сталь // Неорган. материалы. 2020. Т. 56. № 3. С. 343–347. https://doi.org/10.31857/S0002337X20030094
  14. Сеплярский Б.С. Фазовый состав и структурa продуктов синтеза карбида титана с никелевой связкой // Неорган. материалы. 2019. Т. 55. № 11. С. 1169–1175. https://doi.org/10.1134/S0002337X19110113

Қосымша файлдар


© А.А. Гумовская, В.В. Шеховцов, А.Я. Пак, Р.Д. Герасимов, О.Г. Волокитин, Г.Я. Мамонтов, 2023