Atmospheric-Pressure Synthesis of Titanium Carbide in an Arc Plasma Reactor

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper reports on titanium carbide synthesis in an atmospheric-pressure arc plasma reactor by exposing a stoichiometric starting mixture (Ti : C ~ 1 : 1.05) to a plasma jet. The phase composition of the synthesized TiC powder has been determined as a function of the time during which the starting mixture was exposed to a thermal plasma flow and the current (40–120 A) through the electric arc plasma source. The powders obtained under optimal conditions consist of the cubic titanium carbide phase and have a broad particle size distribution, with distinct agglomerates on the order of 50–100 μm in size. It is worth noting that the surface of the agglomerates has the form of a densified perforated crust (with a pore diameter no greater that 2 μm).

作者简介

A. Gumovskaya

Tomsk State University of Architecture and Civil Engineering; National Research Tomsk Polytechnic University

Email: aag109@tpu.ru
634003, Tomsk, Russia; 634050, Tomsk, Russia

V. Shekhovtsov

Tomsk State University of Architecture and Civil Engineering

Email: shehovcov2010@yandex.ru
634003, Tomsk, Russia

A. Pak

Tomsk Polytechnic University

Email: grinko_aa@surgu.ru
Tomsk, 634050 Russia

R. Gerasimov

Tomsk State University of Architecture and Civil Engineering; National Research Tomsk Polytechnic University

Email: aag109@tpu.ru
634003, Tomsk, Russia; 634050, Tomsk, Russia

O. Volokitin

Tomsk State University of Architecture and Civil Engineering

Email: aag109@tpu.ru
634003, Tomsk, Russia

G. Mamontov

National Research Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: aag109@tpu.ru
634050, Tomsk, Russia

参考

  1. Bonis A. De Formation of Titanium Carbide (TiC) and TiC@C Core-Shell Nanostructures by Ultra-Short Laser Ablation of Titanium Carbide and Metallic Titanium in Liquid // J. Colloid Interface Sci. 2017. V. 489. P. 76–84. https://doi.org/10.1016/j.jcis.2016.08.078
  2. Cho D. Synthesis of Titanium Carbide–Carbon Nanofibers via Carbothermal Reduction of Titania with Carbon // Ceram. Int. 2015. V. 41. № 9. P. 10974–10979. https://doi.org/10.1016/j.ceramint.2015.05.041
  3. Dong Q. Functionalized Titanium Carbide as Novel Catalyst Support for Pd Catalyzed Electrochemical Reaction // Int. J. Hydrogen Energy. 2017. V. 42. № 5. P. 3206–3214. https://doi.org/10.1016/j.ijhydene.2016.09.217
  4. Ghidiu M. Conductive Two-Dimensional Titanium Carbide “Clay” with High Volumetric Capacitance // Nature. 2014. V. 516. P. 78–81. https://doi.org/10.1038/nature13970
  5. Ghosh S. Synthesis of Titanium Carbide Nanoparticles by Wire Explosion Process and Its Application in Carbon Dioxide Adsorption // J. Alloys Compd. 2019. V. 794. P. 645–653. https://doi.org/10.1016/j.jallcom.2019.04.299
  6. Gusev A. I. Phase Equilibria, Phases and Compounds in the TiC System // Russ. Chem. Rev. 2002. V. 71. № 6. P. 439–463. https://doi.org/10.1070/RC2002v071n06ABEH000721
  7. Kunkel C. Combining Theory and Experiment for Multitechnique Characterization of Activated CO2 on Transition Metal Carbide (001) Surfaces // J. Phys. Chem. C. 2019. V. 123. № 13. P. 7567–7576. https://doi.org/10.1021/acs.jpcc.7b12227
  8. Lin S. Y., Zhang X. Two-Dimensional Titanium Carbide Electrode with Large Mass Loading for Supercapacitor // J. Power Sources. 2015. V. 294. P. 354–359. https://doi.org/10.1016/j.jpowsour.2015.06.082
  9. Luo Y. A Long Cycle Life Asymmetric Supercapacitor Based on Advanced Nickel-Sulfide/Titanium Carbide (Mxene) Nanohybrid and MXene Electrodes // J. Power Sources. 2020. V. 450. P. 227694. https://doi.org/10.1016/j.jpowsour.2019.227694
  10. Rasaki S. A. Synthesis and Application of Nano-Structured Metal Nitrides and Carbides: A Review // Prog. Solid State Chem. 2018. V. 50. P. 1–15. https://doi.org/10.1016/j.progsolidstchem.2018.05.001
  11. Shekhovtsov V.V., Skripnikova N.K., Volokitin O.G. Phase Transitions in SiO2 Nanopowder Synthesized by Electric Arc Plasma // IEEE Trans. plasma Sci. 2021. V. 49. № 9. https://doi.org/10.1109/TPS.2021.3091138
  12. Syamsai R. Synthesis and Properties of 2D-Titanium Carbide MXene Sheets towards Electrochemical Energy Storage Applications // Ceram. Int. 2017. V. 43. № 16. P. 13119–13126. https://doi.org/10.1016/j.ceramint.2017.07.003
  13. Крылова Т.А. Коррозионная стойкость и износостойкость покрытий, полученных методом вневакуумной электронно-лучевой наплавки тугоплавких карбидов на низкоуглеродистую сталь // Неорган. материалы. 2020. Т. 56. № 3. С. 343–347. https://doi.org/10.31857/S0002337X20030094
  14. Сеплярский Б.С. Фазовый состав и структурa продуктов синтеза карбида титана с никелевой связкой // Неорган. материалы. 2019. Т. 55. № 11. С. 1169–1175. https://doi.org/10.1134/S0002337X19110113

补充文件

附件文件
动作
1. JATS XML
2.

下载 (116KB)
3.

下载 (215KB)
4.

下载 (193KB)
5.

下载 (1MB)
6.

下载 (3MB)

版权所有 © А.А. Гумовская, В.В. Шеховцов, А.Я. Пак, Р.Д. Герасимов, О.Г. Волокитин, Г.Я. Мамонтов, 2023