Analysis of the relationship between the activity of the reticular formation of the medulla oblongata, respiratory and cardiovascular systems in rats under painful stimulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the method for calculating the average of conditional probabilities of recurrence intervals, a comparative analysis was performed to estimate the direction of coupling between different physiological rhythms in the form of fluctuations in blood pressure, respiration, and the activity of neurons in the reticular formation of the medulla oblongata in two groups of anesthetized rats under pain stimulation or no stimulus. It was found that there are different kinds of the directions of coupling between the analyzed rhythms. Most of the data obtained for rats from the control group and rats with experimentally induced colitis suggest the statistically significant unidirectionality of coupling. Painful stimulation did not affect the direction of coupling, but the amount of data on unidirectionaity of coupling slightly reduced. At the same time, the rhythms associated with the cardiovascular system (blood pressure variability) were controlled by the rhythms of the respiratory system, and the respiratory rhythm controlled the variability of the activity of neurons in the reticular formation of the medulla oblongata.

About the authors

O. E Dick

I.P. Pavlov Institute of Physiology, Russian Academy of Sciences

Email: dickviola@gmail.com
St. Petersburg, Russia

References

  1. M. C. Romano, M. Thiel, J. Kurths, et al., Europhys. Lett., 71, 466 (2005). doi: 10.1209/epl/i2005-10095-1
  2. J. Kurths, M. C. Romano, M. Thiel, et al., Nonlinear Dynam., 44, 135 (2006). doi: 10.1007/s11071-006-1957-x
  3. M. C. Romano, M. Thiel, J. Kurths, and C. Grebogi, Phys Rev E, 76, 036211-1 (2007). doi: 10.1103/Phys-RevE.76.036211
  4. D. Rangaprakash and N. Pradhan, Biomed. Signal. Proces. Control., 11, 114 (2014). doi: 10.1016/j.bspc.2014.02.012
  5. O. E. Dick and A. L. Glazov, Neurocomputing, 455, 163 (2021). doi: 10.1016/j.neucom.2021.05.038
  6. O. E. Dick and A. L. Glazov, Tech. Phys., 67 (2), 48 (2022). doi: 10.1134/S1063784222010030
  7. A. R. Kiselev, S. A. Mironov, A. S. Karavaev, et al., Physiol. Meas., 37 (4), 580 (2016). doi: 10.1088/09673334/37/4/580
  8. V. S. Khorev, J. M. Ishbulatov, E. E. Lapsheva, et al., Information and Control Systems, 1, 42 (2018). doi: 10.15217/issn1684-8853.2018.1.42
  9. T. E. Dick, Y. H. Hsieh, R. R. Dhingra, et al., Prog. Brain Res., 209, 191 (2014). doi: 10.1016/B978-0-444-63274-6.00010-2
  10. Y. Shiogai, A. Stefanovska, and P. V. E. McClintock, Phys. Reports, 488, 51 (2010). doi: 10.1016/j.phys-rep.2009.12.003
  11. D. Hoyer, U. Leder, H. Hoyer, et al., Med. Eng. Phys., 24, 33 (2002). doi: 10.1016/S1350-4533(01)00120-5
  12. A. S. Karavaev, M. D. Prokhorov, V. I. Ponomarenko, et al., Chaos, 19, 033112-1 (2009). doi: 10.1063/1.3187794
  13. O. A. Lyubashina, A. A. Mikhalkin, and I. B. Sivachenko, Integrat. Physiol., 2 (1), 78 (2021). doi: 10.33910/2687- 1270-2021-2-1-71-78
  14. O. A. Lyubashina, I. B. Sivachenko, and A. A. Mikhalkin, Brain Res. Bull., 182, 2 (2022). doi: 10.1016/j.brainresbull.2022.02.002
  15. L. Faes, G. Nollo, and K. Chon, Ann. Biomed. Eng., 36, 381 (2008). doi: 10.1007/s10439-008-9441-z
  16. M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. E, 64, 045202-1 (2001). doi: 10.1103/PhysRevE.64.045202
  17. N. Marwan, Y. Zou, N. Wessel, et al., Phil. Trans. Roy. Soc. A, 371, 20110624-1 (2013). doi: 10.1098/rsta. 2011.0624
  18. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Phys. Reports, 438, 237 (2007). doi: 10.1016/j.phys-rep.2006.11.001
  19. F. Takens, In Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Ed. by D. Rand and L. S. Young, (Springer-Verlag. Berlin, 1981), V. 898, pp. 366-381.
  20. M. B. Kennel, R. Brown, and H. D. Abarbanel, Phys. Rev. A, 45, 3403 (1992).
  21. A. M. Fraser and H. L. Swinney, Phys. Rev., 33, 1134 (1986).
  22. M. Thiel, M. C. Romano, J. Kurths, et al., Phil. Trans. Roy. Soc. A, 366, 545 (2008).
  23. P. R. Bevington and D. K. Robinson, In Data reduction and error analysis for the physical sciences, Third ed. (McGraw_Hill Higher Education, 2003), p. 338.
  24. V. I. Ponomarenko, M. D. Prokhorov, A. B. Bespyatov, et al., Chaos, Solitons and Fractals, 23, 1429 (2005).
  25. M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, et al., Phys. Rev. E, 65, 041909-1 (2002). doi: 10.1103/PhysRevE.65.041909
  26. R. Mrowka, L. Cimponeriu, A. Patzak, and M. G. Rosenblum, Amer. J. Physiol. Regulatory, Integrative Comp. Physiol., 285 (6), 1395 (2003). doi: 10.1152/ajpregu.00373.2003
  27. A. J. Ocon, M. S. Medow, I. Taneja, and J. M. Stewart, Am. J. Physiol. Heart Circ. Physiol., 300, 527 (2011). doi: 10.1152/ajpheart.00257.2010
  28. A. Stefanovska, H. Haken, P. V. E. McClintock, et al., Phys. Rev. Lett., 85 (22), 4831 (2000). doi: 10.1103/PhysRevLett.85.4831

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences