Effect of TRO19622 (Olesoxime) on the Functional Activity of Isolated Mitochondria and Cell Viability
- Authors: Ilzorkina A.I1,2, Belosludtseva N.V1,2, Semenova A.A1, Dubinin M.V1, Belosludtsev K.N1
-
Affiliations:
- Mari State University
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 69, No 4 (2024)
- Pages: 737-746
- Section: Cell biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/675913
- DOI: https://doi.org/10.31857/S0006302924040068
- EDN: https://elibrary.ru/NHRMXT
- ID: 675913
Cite item
Abstract
About the authors
A. I Ilzorkina
Mari State University; Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesYoshkar-Ola, Russia; Pushchino, Russia
N. V Belosludtseva
Mari State University; Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesYoshkar-Ola, Russia; Pushchino, Russia
A. A Semenova
Mari State UniversityYoshkar-Ola, Russia
M. V Dubinin
Mari State UniversityYoshkar-Ola, Russia
K. N Belosludtsev
Mari State University
Email: bekonik@gmail.com
Yoshkar-Ola, Russia
References
- Kim J., Gupta R., Blanco L. P., Yang S., ShteinferKuzmine A., Wang K., Zhu J., Yoon H. E., Wang X., Kerkhofs M., Kang H., Brown A. L., Park S.-J., Xu X., Rilland E. Z., Kim M. K., Cohen J. I., Kaplan M. J., Shoshan-Barmatz V., and Chung J. H. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science, 366 (6472), 1531 (2019). doi: 10.1126/science.aav4011
- Shoshan-Barmatz V., Maldonado E. N., and Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress, 29, 1 (1), 11–36 (2017). doi: 10.15698/cst2017.11.104
- Shoshan-Barmatz V. and Golan M. Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr. Med. Chem., 19 (5), 714 (2012). doi: 10.2174/092986712798992110
- Belosludtseva N. V., Dubinin M. V., and Belosludtsev K. N. Pore-forming vdac proteins of the outer mitochondrial membrane: regulation and pathophysiological role. Biochemistry (Moscow), 89 (6), 1061 (2024). doi: 10.1134/S0006297924060075
- Varughese J. T., Buchanan S. K., and Pitt A. S. The role of voltage-dependent anion channel in mitochondrial dysfunction and human disease. Cells, 10 (7), 1737 (2021). doi: 10.3390/cells10071737
- Ott M., Robertson J. D., Gogvadze V., Zhivotovsky B., and Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. USA, 99 (3), 1259–1263 (2002). doi: 10.1073/pnas.241655498
- Tsujimoto Y. and Shimizu S. The voltage-dependent anion channel: an essential player in apoptosis. J. Biochimie, 84 (2–3), 187–193, (2002). doi: 10.1016/s0300-9084(02)01370-6
- Yang M., Camara A. K. S., Aldakkak M., et al. Identity and function of a cardiac mitochondrial small conductance Ca2+-activated K+ channel splice variant. Biochim. Biophys. Acta – Bioenergetics, 1858 (6), 442 (2017). doi: 10.1016/j.bbabio.2017.03.005
- Tricaud N., Gautier B., Berthelot J., Gonzalez S., and Hameren G. V. Traumatic and diabetic schwann cell demyelination is triggered by a transient mitochondrial calcium release through voltage dependent anion channel 1. Biomedicines, 10 (6), 1447 (2022). doi: 10.3390/biomedicines10061447
- Bordet T., Berna P., Abitbol J.-L., and Rebecca M. P. Olesoxime (TRO19622): a novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals (Basel), 3 (2), 345–368 (2010). doi: 10.3390/ph3020345
- Serov D., Tikhonova I., Safronova V., and Astashev M. Calcium activity in response to nAChR ligands in murine bone marrow granulocytes with different Gr-1 expression. J. Cell Biol. Int., 45 (7), 1533–1545 (2021). doi: 10.1002/cbin.11593
- Dubinin M. V., Nedopekina D. A., Ilzorkina A. I., Semenova A. A., Sharapov V. A., Davletshin E. V., Mikina N. V., Belsky Y. P., Spivak A. Yu., Akatov V. S., Belosludtseva N. V., Jiankang L., and Belosludtsev K. N. Conjugation of triterpenic acids of ursane and oleanane types with mitochondria-targeting cation F16 synergistically enhanced their cytotoxicity against tumor cells. Membranes, 13 (6), 563 (2023). doi: 10.3390/membranes13060563
- Belosludtsev K. N., Belosludtseva N. V., Kosareva E. A., Talanov E. Y., Gudkov S. V., and Dubinin M. V. Itaconic acid impairs the mitochondrial function by the inhibition of complexes II and IV and induction of the permeability transition pore opening in rat liver mitochondria. Biochimie, 176, 150–157 (2020). doi: 10.1016/j.biochi.2020.07.011
- Belosludtseva N. V., Starinets V. S., Semenova A. A., Igoshkina A. D., Dubinin M. V., and Belosludtsev K. N. S-15176 Difumarate salt can impair mitochondrial function through inhibition of the respiratory complex III and permeabilization of the inner mitochondrial membrane. Biology (Basel), 11 (3), 380 (2022). doi: 10.3390/biology11030380
- Dubinin M. V., Semenova A. A., Nedopekina D. A., Davletshin E. V., Spivak A. Y., and Belosludtsev K. N. Mitochondrial dysfunction induced by F16-betulin conjugate and its role in cell death initiation. Membranes, 11 (5), 352 (2021). doi: 10.3390/membranes11050352
- Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature Protoc., 7 (6), 1235–1246 (2012). doi: 10.1038/nprot.2012.058
- Belosludtsev K. N., Dubinin M. V., Talanov E. Yu., Starinets V. S., Tenkov K. S., Zakharova N. M., and Belosludtseva N. V. Transport of Ca2+ and Ca2+-dependent permeability transition in the liver and heart mitochondria of rats with different tolerance to acute hypoxia. Biomolecules, 10 (1), 114 (2020). doi: 10.3390/biom10010114
- Verma A., Shteinfer-Kuzmine A., Kamenetsky N., Pittala S., Paul A., Crystal E. N., Ouro A., ChalifaCaspi V., Pandey S. K., Monsonego A., Vardi N., Knafo S., and Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl. Neurodegener., 11 (1), 58 (2022). doi: 10.1186/s40035-022-00329-7
- Mookerjee S. A., Gerencser A. A., Watson M. A., and Brand M. D. Controlled power: how biology manages succinate-driven energy release. Biochem. Soc. Trans., 49 (6), 2929–2939 (2021). doi: 10.1042/BST20211032
- Martin J. L., Costa A. S. H., Gruszczyk A. V., BeachT. E., Allen F. M., Prag H. A., Hinchy E. C., Mahbubani K., Hamed M., Tronci L., Nikitopoulou E., James A. M., Krieg T., Robinson A. J., HuangM. M., Caldwell S. T., Logan A., Pala L., Hartley R. C., Frezza Ch. , Saeb-Parsy K., and Murphy M. P. Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nature Metab., 1, 966–974 (2019). doi: 10.1038/s42255-019-0115-y
- Chouchani E. T., Pell V. R., Gaude E., Aksentijević D., Sundier S. Y., Robb E. L., Logan A., Nadtochiy S. M., Ord E. N. J., Smith A. C., Eyassu F., Shirley R., Hu Ch.-H., Dare A. J., James A. M., Rogatti S., Hartley R. C., Eaton S., Costa A. S. H., Brookes P. S., Davidson S. M., Duchen M. R., Saeb-Parsy K., Shattock M. J., Robinson A. J., Work L. M., Frezza Ch., Krieg T., and Murphy M. P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515 (7527), 431–435 (2014). doi: 10.1038/nature13909
- Bordet T., Buisson B., Michaud M., Drouot C., Galea P., Delaage P., Akentieva N. P., Evers A. S., Covey D. F., Ostuni M. A., Lacapere J. J., Massaad C., Schumacher M., Steidl E. M., Maux D., Delaage M., Henderson C. E., and Pruss R. M. Identification and characterization of cholest-4-en-3-one,oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J. Pharmacol. Exp. Ther., 322 (2), 709–720 (2007). doi: 10.1124/jpet.107.123000
- Muntoni F., Bertini E., Comi G., Kirschner J., Lusakowska A., Mercuri E., Scoto M., Ludo van der Pol W., Vuillerot C., Burdeska A., El-Khairi M., Fontoura P., Ives J., Gorni K., Reid C., and Fuerst-Recktenwald S. Long-term follow-up of patients with type 2 and nonambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromusc. Disorders, 30 (12), 959–969 (2020). doi: 10.1016/j.nmd.2020.10.008
Supplementary files
