Molecular Mechanisms of FLASH Effect in Radiobiology
- Authors: Glukhov S.I1, Kuznetsova E.A1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 69, No 4 (2024)
- Pages: 868-886
- Section: Complex systems biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/675940
- DOI: https://doi.org/10.31857/S0006302924040183
- EDN: https://elibrary.ru/NFOWYQ
- ID: 675940
Cite item
Abstract
The use of ultra-high dose-rate ionizing radiation, termed FLASH irradiation (≥40 Gy/s), contributes to healthy tissue sparing while maintaining tumor control compared to conventional dose rate irradiation. This review summarizes current knowledge dedicated to studies of tumor and normal cell lines, animals including tumor-bearing ones irradiated in conventional and FLASH dose rate irradiation modes. As a comparison, data on FLASH irradiation with photons, electrons, protons, helium and carbon ions are also presented. The biophysical, molecular biological and immunological aspects of FLASH effect which are essential for understanding the radiation-induced processes in cells and tissues in order to improve radiotherapy of tumors are discussed.
About the authors
S. I Glukhov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: serglukhovmb@gmail.com
Pushchino, Russia
E. A Kuznetsova
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
References
- Hornsey S. and Alper T. Unexpected Dose-rate Effect in the Killing of Mice by Radiation. Nature, 210 (5032), 212–213 (1966). doi: 10.1038/210212a0
- Town C. D. Effect of high dose rates on survival of mammalian cells. Nature, 215 (5103), 847–848 (1967). doi: 10.1038/215847a0
- Field S. B. and Bewley D. K. Effects of dose-rate on the radiation response of rat skin. Int. J. Radiat. Biol., 26 (3), 259–267 (1974). doi: 10.1080/09553007414551221
- Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M.-F., Brito I., Hupe P., Bourhis J., Hall J., Fontaine J.-J., and Vozenin M.-C. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Translat. Med., 6 (245), 245ra93 (2014). doi: 10.1126/scitranslmed.3008973
- Atkinson J., Bezak E., Le H., and Kempson I. The current status of FLASH particle therapy: a systematic review. Phys. Engineer. Sci. Med., 46 (2), 529–560 (2023). doi: 10.1007/s13246-023-01266-z
- Liljedahl E., Konradsson E., Gustafsson E., Jonsson K. F., Olofsson J. K., Ceberg C., and Redebrandt H. N. Long-term anti-tumor effects following both conventional radiotherapy and FLASH in fully immunocompetent animals with glioblastoma. Sci. Rep., 12 (1), 12285 (2022).doi: 10.1038/s41598-022-16612-6
- Shi X., Yang Y., Zhang W., Wang J., Xiao D., Ren H., Wang T., Gao F., Liu Z., Zhou K., Li P., Zhou Z., Zhang P., Shen X., Liu Y., Zhao J., Wang Z., Liu F., Shao C., Wu D., and Zhang H. FLASH X-ray spares intestinal crypts from pyroptosis initiated by cGASSTING activation upon radioimmunotherapy. Proc. Natl. Acad. Sci. USA, 119 (43), e2208506119 (2022). doi: 10.1073/pnas.2208506119
- Cao X., Zhang R., Esipova T. V., Allu S. R., Ashraf R., Rahman M., Gunn J. R., Bruza P., Gladstone D. J., Williams B. B., Swartz H. M., Hoopes P. J., Vinogradov S. A., and Pogue B. W. Quantification of oxygen depletion during flash irradiation in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys., 111 (1), 240–248 (2021). doi: 10.1016/j.ijrobp.2021.03.056
- Kusumoto T., Inaniwa T., Mizushima K., Sato S., Hojo S., Kitamura H., Konishi T., and Kodaira S. Radiation chemical yields of 7-hydroxy-coumarin-3-carboxylic acid for proton- and carbon-ion beams at ultrahigh dose rates: potential roles in FLASH effects. Radiat. Res., 198 (3), 255–262 (2022). doi: 10.1667/RADE-21-00.230.1
- Khan S., Bassenne M., Wang J., Manjappa R., Melemenidis S., Breitkreutz D. Y., Maxim P. G., Xing L., Loo B. W., and Pratx G. Multicellular spheroids as in vitro models of oxygen depletion during FLASH irradiation. Int. J. Radiat. Oncol. Biol. Phys., 110 (3), 833–844 (2021). doi: 10.1016/j.ijrobp.2021.01.050
- Small K .L., Henthorn N. T., Angal-Kalinin D., Chadwick A. L., Santina E., Aitkenhead A., Kirkby K. J., Smith R. J., Surman M., Jones J., Farabolini W., Corsini R., Gamba D., Gilardi A., Merchant M. J., and Jones R. M. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci. Rep., 11 (1), 3341 (2021). doi: 10.1038/s41598-021-82772-6
- Perstin A., Poirier Y., Sawant A., and Tambasco M. Quantifying the DNA-damaging effects of FLASH irradiation with plasmid DNA. Int. J. Radiat. Oncol. Biol. Phys., 113 (2), 437–447 (2022). doi: 10.1016/j.ijrobp.2022.01.049
- Tashiro M., Yoshida Y., Oike T., Nakao M., Yusa K., Hirota Y., and Ohno T. First human cell experiments with FLASH carbon ions. Anticancer Res., 42 (5), 2469–2477 (2022). doi: 10.21873/anticanres.15725
- Tinganelli W., Sokol O., Quartieri M., Puspitasari A., Dokic I., Abdollahi A., Durante M., Haberer T., Debus J., Boscolo D., Voss B., Brons S., Schuy C., Horst F., and Weber U. Ultra-high dose rate (FLASH) carbon ion irradiation: dosimetry and first cell experiments. Int. J. Radiat. Oncol. Biol. Phys., 112 (4), 1012–1022 (2022). doi: 10.1016/j.ijrobp.2021.11.020
- Tessonnier T., Mein S., Walsh D. W. M., Schuhmacher N., Liew H., Cee R., Galonska M., Scheloske S., Schomers C., Weber U., Brons S., Debus J., Haberer T., Abdollahi A., Mairani A., and Dokic I. FLASH dose rate helium ion beams: first in vitro investigations. Int. J. Radiat. Oncol. Biol. Phys., 111 (4), 1011–1022 (2021). doi: 10.1016/j.ijrobp.2021.07.1703
- Bozhenko V. K., Ivanov A. V., Kulinich T. M., Smirnov V. P., Shishkin A. M., and Solodky V. A. Comparison of biological effects of γ-radiation of low and ultra-high dose rate on lymphocytes and cultured human malignant lymphoma cells. Bull. Exp. Biol. Med., 166 (6), 785–787 (2019). doi: 10.1007/s10517-019-04440-0
- Han J., Mei Z., Lu C., Qian J., Liang Y., Sun X., Pan Z., Kong D., Xu S., Liu Z., Gao Y., Qi G., ShouY., Chen S., Cao Z., Zhao Y. Y., Lin C., ZhaoY. Y., Geng Y., Chen J., Yan X., Ma W., and Yang G. Ultra-high dose rate FLASH irradiation induced radio-resistance of normal fibroblast cells can be enhanced by hypoxia and mitochondrial dysfunction resulting from loss of cytochrome c. Front. Cell Develop. Biol., 9 (4), 672929 (2021). doi: 10.3389/fcell.2021.672929
- Guo Z., Buonanno M., Harken A., Zhou G., and Hei T. K. Mitochondrial damage response and fate of normal cells exposed to FLASH irradiation with protons. Radiat. Res., 197 (6), 569–582 (2022). doi: 10.1667/RADE-21-00181.1
- Buonanno M., Grilj V., and Brenner D.J. Biological effects in normal cells exposed to FLASH dose rate protons. Radiotherapy and Oncology, 139 (10), 51–55 (2019). doi: 10.1016/j.radonc.2019.02.009
- Schmid T. E., Dollinger G., Hable V., Greubel C., Zlobinskaya O., Michalski D., Auer S., Friedl A. A., Schmid E., Molls M., and Roper B. The effectiveness of 20 MeV protons at nanosecond pulse lengths in producing chromosome aberrations in human-hamster hybrid cells. Radiat. Res., 175 (6), 719–727 (2011). doi: 10.1667/RR2465.1
- Schmid T. E., Dollinger G., Hable V., Greubel C., Zlobinskaya O., Michalski D., Molls M., and Roper B. Relative biological effectiveness of pulsed and continuous 20MeV protons for micronucleus induction in 3D human reconstructed skin tissue. Radiotherapy and Oncology, 95 (1), 66–72 (2010). doi: 10.1016/j.radonc.2010.03.010
- Schmid T. E., Dollinger G., Hauptner A., Hable V., Greubel C., Auer S., Friedl A. A., Molls M., and Roper B. No evidence for a different RBE between pulsed and continuous 20 MeV protons. Radiat. Res., 172 (5), 567–574 (2009). doi: 10.1667/RR1539.1
- Adrian G., Konradsson E., Lempart M., Back S., Ceberg C., and Petersson K. The FLASH effect depends on oxygen concentration. Br. J. Radiol., 93 (1106), 20190702 (2020). doi: 10.1259/bjr.20190702
- Matsuura T., Egashira Y., Nishio T., Matsumoto Y., Wada M., Koike S., Furusawa Y., Kohno R., Nishioka S., Kameoka S., Tsuchihara K., Kawashima M., and Ogino T. Apparent absence of a proton beam dose rate effect and possible differences in RBE between Bragg peak and plateau. Med. Phys., 37 (10), 5376–5381 (2010). doi: 10.1118/1.3490086
- Barghouth P. G., Melemenidis S., Montay-Gruel P., Ollivier J., Viswanathan V., Jorge P. G., Soto L. A., Lau B. C., Sadeghi C., Edlabadkar A., Zhang R., Ru N., Baulch J. E., Manjappa R., Wang J., Le Bouteiller M., Surucu M., Yu A., Bush K., Skinner L., Maxim P. G., Loo B. W., Limoli C. L., Vozenin M. C., and Frock R. L. FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates. Radiotherapy and Oncology, 188 (11), 109906 (2023). doi: 10.1016/j.radonc.2023.109906
- Fouillade C., Curras-Alonso S., Giuranno L., Quelennec E., Heinrich S., Bonnet-Boissinot S., Beddok A., Leboucher S., Karakurt H. U., Bohec M., Baulande S., Vooijs M., Verrelle P., Dutreix M., LondonoVallejo A., and Favaudon V. FLASH irradiation spares lung progenitor cells and limits the incidence of radioinduced senescence. Clin. Cancer Res., 26 (6), 1497–1506 (2020). doi: 10.1158/1078-0432.CCR-19-1440
- Dai Y., Liang R., Wang J., Zhang J., Wu D., Zhao R., Liu Z., and Chen F. Fractionated FLASH radiation in xenografted lung tumors induced FLASH effect at a split dose of 2 Gy. Int. J. Radiat. Biol., 99 (10), 1542–1549 (2023). doi: 10.1080/09553002.2023.2194403
- Zhang Q., Cascio E., Li C., Yang Q., Gerweck L. E., Huang P., Gottschalk B., Flanz J., and Schuemann J. FLASH investigations using protons: design of delivery system, preclinical setup and confirmation of FLASH effect with protons in animal systems. Radiat. Res., 194 (6), 656–664 (2020). doi: 10.1667/RADE-20-00068.1
- Levy K., Natarajan S., Wang J., Chow S., Eggold J. T., Loo P. E., Manjappa R., Melemenidis S., Lartey F. M., Schuler E., Skinner L., Rafat M., Ko R., Kim A., AlRawi D. H., von Eyben R., Dorigo O., Casey K. M., Graves E. E., Bush K., Yu A. S., Koong A. C., Maxim P. G., Loo B. W., and Rankin E. B. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci. Rep., 10 (1), 21600 (2020). doi: 10.1038/s41598-020-78017-7
- Velalopoulou A., Karagounis I. V., Cramer G. M., Kim M. M., Skoufos G., Goia D., Hagan S., Verginadis I. I., Shoniyozov K., Chiango J., Cerullo M., Varner K., Yao L., Qin L., Hatzigeorgiou A. G., Minn A. J., Putt M., Lanza M., Assenmacher C.-A. A., Radaelli E., Huck J., Diffenderfer E., Dong L., Metz J., Koumenis C., Cengel K. A., Maity A., and Busch T. M. Flash proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response. Cancer Res., 81 (18), 4808–4821 (2021). doi: 10.1158/0008-5472.CAN-21-1500
- Chabi S., To Th. H. V., Leavitt R., Poglio S., Jorge P. G., Jaccard M., Petersson K., Petit B., Romeo P.-H. H., Pflumio F., Vozenin M.-C. C., and Uzan B. Ultra-high-dose-rate FLASH and conventionaldose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis. Int. J. Radiat. Oncol. Biol. Phys., 109 (3), 819–829 (2021). doi: 10.1016/j.ijrobp.2020.10.012
- Diffenderfer E. S., Verginadis I. I., Kim M. M., Shoniyozov K., Velalopoulou A., Goia D., Putt M., Hagan S., Avery S., Teo K., Zou W., Lin A., SwisherMcClure S., Koch C., Kennedy A. R., Minn A., Maity A., Busch T. M., Dong L., Koumenis C., Metz J., and Cengel K. A. Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system. Int. J. Radiat. Oncol. Biol. Phys., 106 (2), 440–448 (2020). doi: 10.1016/j.ijrobp.2019.10.049
- Montay-Gruel P., Acharya M. M., Jorge P. G., Petit B., Petridis I. G., Fuchs P., Leavitt R., Petersson K., Gondre M., Ollivier J., Moeckli R., Bochud F., Bailat C., Bourhis J., Germond J.-F. F., Limoli C. L., and Vozenin M.-C. C. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin. Cancer Res., 27 (3), 775–784 (2021). doi: 10.1158/1078-0432.CCR-20-0894
- Tinganelli W., Weber U., Puspitasari A., Simoniello P., Abdollahi A., Oppermann J., Schuy C., Horst F., Helm A., Fournier C., and Durante M. FLASH with carbon ions: tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiotherapy and Oncology, 175 (10), 185–190 (2022). doi: 10.1016/j.radonc.2022.05.003
- Sorensen B. S., Sitarz M. K., Ankjargaard C., Johansen J. G., Andersen C. E., Kanouta E., Grau C., and Poulsen P. Pencil beam scanning proton FLASH maintains tumor control while normal tissue damage is reduced in a mouse model. Radiotherapy and Oncology, 175 (10), 178–184 (2022). doi: 10.1016/j.radonc.2022.05.014
- Smyth L. M. L., Donoghue J. F., Ventura J. A., Livingstone J., Bailey T., Day L. R. J., Crosbie J. C., and Rogers P. A. W. Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Sci. Rep., 8 (1), 12044 (2018). doi: 10.1038/s41598-018-30543-1
- Almeida A., Godfroid C., Leavitt R. J., MontayGruel P., Petit B., Romero J., Ollivier J., Meziani L., Sprengers K., Paisley R., Grilj V., Limoli C. L., Romero P., and Vozenin M.-C. C. Antitumor effect by either FLASH or conventional dose rate irradiation involves equivalent immune responses. Int. J. Radiat. Oncol. Biol. Phys., 118 (4), 1110–1122 (2023). doi: 10.1016/j.ijrobp.2023.10.031
- Eggold J. T., Chow S., Melemenidis S., Wang J., Natarajan S., Loo P. E., Manjappa R., Viswanathan V., Kidd E. A., Engleman E., Dorigo O., Loo B. W., and Rankin E. B. Abdominopelvic FLASH irradiation improves PD-1 immune checkpoint inhibition in preclinical models of ovarian cancer. Mol. Cancer Therapeut., 21 (2), 371–381 (2022). doi: 10.1158/1535-7163.MCT-21-0358
- Gao F., Yang Y., Zhu H., Wang J., Xiao D., Zhou Z., Dai T., Zhang Y., Feng G., Li J., Lin B., Xie G., Ke Q., Zhou K., Li P., Shen X., Wang H., Yan L., Lao C., Shan L., Li M., Lu Y., Chen M., Feng S., Zhao J., Wu D. and Du X. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiotherapy and Oncology, 166 (1), 44–50 (2022). doi: 10.1016/j.radonc.2021.11.004
- Duval K. E. A., Aulwes E., Zhang R., Rahman M., Ashraf M. R., Sloop A., Sunnerberg J., Williams B. B., Cao X., Bruza P., Kheirollah A., Tavakkoli A., Jarvis L. A., Schaner P. E., Swartz H. M., Gladstone D. J., Pogue B. W., and Hoopes P. J. Comparison of tumor control and skin damage in a mouse model after ultrahigh dose rate irradiation and conventional irradiation. Radiat. Res., 200 (3), 223–231 (2023). doi: 10.1667/RADE-23-00057
- Ruan J. L., Lee C., Wouters S., Tullis I. D. C., Verslegers M., Mysara M., Then C. K., Smart S. C., Hill M. A., Muschel R. J., Giaccia A. J., Vojnovic B., Kiltie A. E., and Petersson K. Irradiation at ultra-high (FLASH) dose rates reduces acute normal tissue toxicity in the mouse gastrointestinal system. Int. J. Radiat. Oncol. Biol. Phys., 111 (5), 1250–1261 (2021). doi: 10.1016/j.ijrobp.2021.08.004
- Zhang Q., Gerweck L.E., Cascio E., Yang Q., Huang P., Niemierko A., Bertolet A., Nesteruk K. P., McNamara A., and Schuemann J. Proton FLASH effects on mouse skin at different oxygen tensions. Phys. Med. Biol., 68 (5), 055010 (2023). doi: 10.1088/13616560/acb888
- Zhang Q., Gerweck L. E., Cascio E., Gu L., Yang Q., Dong X., Huang P., Bertolet A., Nesteruk K. P., SungW., McNamara A. L., and Schuemann J. Absence of tissue-sparing effects in partial proton FLASH irradiation in murine intestine. Cancers, 15 (8), 2269 (2023). doi: 10.3390/cancers15082269
- Evans T., Cooley J., Wagner M., Yu T., and Zwart T. Demonstration of the FLASH effect within the spreadout bragg peak after abdominal irradiation of mice. Int. J. Particle Therapy, 8 (4), 68–75 (2022). doi: 10.14338/IJPT-20-00095
- Allen B. D., Alaghband Y., Kramar E. A., Ru N., Petit B., Grilj V., Petronek M. S., Pulliam C. F., Kim R. Y., Doan N. L., Baulch J. E., Wood M. A., Bailat C., Spitz D. R., Vozenin M. C., and Limoli C. L. Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy. Neuro-Oncology, 25 (5), 927–939 (2023). doi: 10.1093/neuonc/noac248
- Zhu H., Xie D., Wang Y., Huang R., Chen X., Yang Y., Wang B., Peng Y., Wang J., Xiao D., Wu D., Qian C. N., and Deng X. Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies. Clin. Translat. Rad. Oncol., 38 (11), 138–146 (2023). doi: 10.1016/j.ctro.2022.11.005
- Almeida A., Togno M., Ballesteros-Zebadua P., FrancoPerez J., Geyer R., Schaefer R., Petit B., Grilj V., Meer D., Safai S., Lomax T., Weber D. C., Bailat C., Psoroulas S., and Vozenin M.C. Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiotherapy and Oncology, 190 (1), 109953 (2024). doi: 10.1016/j.radonc.2023.109953
- Cuitino M. C., Fleming J. L., Jain S., Cetnar A., Ayan A. S., Woollard J., Manring H., Meng W., McElroy J. P., Blakaj D. M., Gupta N., and Chakravarti A. Comparison of gonadal toxicity of single-fraction ultrahigh dose rate and conventional radiation in mice. Adv. Radiat. Oncol., 8 (4), 101201 (2023). doi: 10.1016/j.adro.2023.101201
- Mascia A., McCauley S., Speth J., Nunez S. A., Boivin G., Vilalta M., Sharma R. A., Perentesis J. P., and Sertorio M. Impact of multiple beams on the FLASH effect in soft tissue and skin in mice. Int. J. Radiat. Oncol. Biol. Phys., 118 (1), 253–261 (2024). doi: 10.1016/j.ijrobp.2023.07.024
- Konradsson E., Liljedahl E., Gustafsson E., Adrian G., Beyer S., Ilaahi S. E., Petersson K., Ceberg C., and Nittby Redebrandt H. Comparable long-term tumor control for hypofractionated FLASH versus conventional radiation therapy in an immunocompetent rat glioma model. Adv. Radiat. Oncol., 7 (6), 101011 (2022). doi: 10.1016/j.adro.2022.101011
- Iturri L., Bertho A., Lamirault C., Brisebard E., Juchaux M., Gilbert C., Espenon J., Sebrie C., Jourdain L., de Marzi L., Pouzoulet F., Muret J., Verrelle P., and Prezado Y. Oxygen supplementation in anesthesia can block FLASH effect and anti-tumor immunity in conventional proton therapy. Commun. Medicine, 3 (1), 183 (2023). doi: 10.1038/s43856-023-00411-9
- Iturri L., Bertho A., Lamirault C., Juchaux M., Gilbert C., Espenon J., Sebrie C., Jourdain L., Pouzoulet F., Verrelle P., De Marzi L., and Prezado Y. Proton FLASH radiation therapy and immune infiltration: evaluation in an orthotopic glioma rat model. Int. J. Radiat. Oncol. Biol. Phys., 116 (3), 655–665 (2023). doi: 10.1016/j.ijrobp.2022.12.018
- Karsch L., Pawelke J., Brand M., Hans S., Hideghety K., Jansen J., Lessmann E., Lock S., Schurer M., Schurig R., Seco J., Szabo E. R., and Beyreuther E. Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo. Radiotherapy and Oncology, 173 (8), 49–54 (2022). doi: 10.1016/j.radonc.2022.05.025
- Beyreuther E., Brand M., Hans S., Hideghety K., Karsch L., Lesmann E., Schurer M., Szabo E. R., and Pawelke J. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiotherapy and Oncology, 139 (10), 46–50 (2019). doi: 10.1016/j.radonc.2019.06.024
- Pawelke J., Brand M., Hans S., Hideghety K., Karsch L., Lessmann E., Lock S., Schurer M., Szabo E. R., and Beyreuther E. Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiotherapy and Oncology, 158 (5), 7–12 (2021). doi: 10.1016/j.radonc.2021.02.003
- Saade G., Bogaerts E., Chiavassa S., Blain G., Delpon G., Evin M., Ghannam Y., Haddad F., Haustermans K., Koumeir C., Macaeva E., Maigne L., Mouchard Q., Servagent N., Sterpin E., Supiot S., and Potiron V. Ultrahigh-dose-rate proton irradiation elicits reduced toxicity in zebrafish embryos. Adv. Radiat. Oncol., 8 (2), 101124 (2023). doi: 10.1016/j.adro.2022.101124
- Ghannam Y., Chiavassa S., Saade G., Koumeir C., Blain G., Delpon G., Evin M., Haddad F., Maigne L., Mouchard Q., Servagent N., Potiron V., and Supiot S. First evidence of in vivo effect of FLASH radiotherapy with helium ions in zebrafish embryos. Radiotherapy and Oncology, 187 (8), 109820 (2023). doi: 10.1016/j.radonc.2023.109820
- Bley C. R., Wolf F., Jorge P. G., Grilj V., Petridis I., Petit B., Bohlen T. T., Moeckli R., Limoli C., Bourhis J., Meier V., and Vozenin M.-C. C. Dose- and volumelimiting late toxicity of FLASH radiotherapy in cats with squamous cell carcinoma of the nasal planum and in mini pigs. Clin. Cancer Res., 28 (17), 3814–3823 (2022). doi: 10.1158/1078-0432.CCR-22-0262
- Borresen B., Arendt M. L., Konradsson E., Bastholm Jensen K., Back S. J., Munck af Rosenschold P., Ceberg C., and Petersson K. Evaluation of single-fraction high dose FLASH radiotherapy in a cohort of canine oral cancer patients. Front. Oncol., 13 (9), 1256760 (2023). doi: 10.3389/fonc.2023.1256760
- Schoenauen L., Stubbe F.-X. X., Van Gestel D., Penninckx S., and Heuskin A.-C. C. C. elegans: A potent model for high-throughput screening experiments investigating the FLASH effect. Clin. Translat. Radiat. Oncol., 45 (12), 100712 (2024). doi: 10.1016/j.ctro.2023.100712
- Bourhis J., Sozzi W. J., Jorge P. G., Gaide O., Bailat C., Duclos F., Patin D., Ozsahin M., Bochud F., Germond J.-F., Moeckli R., and Vozenin M.-C. Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and Oncology, 139 (10), 18–22 (2019). doi: 10.1016/j.radonc.2019.06.019
- Daugherty E. C., Mascia A. E., Sertorio M. G. B., Zhang Y., Lee E., Xiao Z., Speth J., Woo J., McCann C., Russell K., Levine L., Sharma R., Khuntia D., Perentesis J. P., and Breneman J. C. FAST-01: Results of the first-in-human study of proton FLASH radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 114 (3), S4 (2022). doi: 10.1016/j.ijrobp.2022.07.2325
- Daugherty E. C., Mascia A., Zhang Y., Lee E., Xiao Z., Sertorio M., Woo J., McCann C., Russell K., Levine L., Sharma R., Khuntia D., Bradley J., Simone II C. B., Perentesis J., and Breneman J. FLASH Radiotherapy for the treatment of symptomatic bone metastases (FAST-01): protocol for the first prospective feasibility study. JMIR Res. Protocols, 12, e41812 (2023). doi: 10.2196/41812
- Spruijt K., Mossahebi S., Lin H., Lee E., Kraus J., Dhabaan A., Poulsen P., Lowe M., Ayan A., Spiessens S., Godart J., and Hoogeman M. Multi‐institutional consensus on machine QA for isochronous cyclotron‐based systems delivering ultra‐high dose rate (FLASH) pencil beam scanning proton therapy in transmission mode. Med. Phys., 51 (2), 786–798 (2023). doi: 10.1002/mp.16854
- Gregucci F., Spada S., Barcellos-Hoff M. H., Bhardwaj N., Chan Wah Hak C., Fiorentino A., Guha C., Guzman M. L., Harrington K., Herrera F. G., Honeychurch J., Hong T., Iturri L., Jaffee E., Karam S. D., Knott S. R. V, Koumenis C., Lyden D., Marciscano A. E., Melcher A., Mondini M., Mondino A., Morris Z. S., Pitroda S., Quezada S. A., Santambrogio L., Shiao S., Stagg J., Telarovic I., Timmerman R., Vozenin M.-C., Weichselbaum R., Welsh J., Wilkins A., Xu C., Zappasodi R., Zou W., Bobard A., Demaria S., Galluzzi L., Deutsch E., and Formenti S. C. Updates on radiotherapy-immunotherapy combinations (Proc. 6th Annu. ImmunoRad Conf.) Oncoimmunology, 12 (1), 2222560 (2023). doi: 10.1080/2162402X.2023.2222560
- Gupta S., Inman J. L., De Chant J., Obst-Huebl L., Nakamura K., Costello S. M., Marqusee S., Mao J. H., Kunz L., Paisley R., Vozenin M. C., Snijders A. M., and Ralston C. Y. A novel platform for evaluating dose rate effects on oxidative damage to peptides: toward a high-throughput method to characterize the mechanisms underlying the FLASH effect. Radiat. Res., 200 (6), 523–530 (2023). doi: 10.1667/RADE-23-00131.1
- Beyreuther E., Karsch L., Laschinsky L., Lesmann E., Naumburger D., Oppelt M., Richter C., Schurer M., Woithe J. and Pawelke J. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultrahigh pulse dose rate. Int. J. Radiat. Biol., 91 (8), 643–652 (2015). doi: 10.3109/09553002.2015.1043755
- Cooper C. R., Jones D., Jones G. D., and Petersson K. FLASH irradiation induces lower levels of DNA damage ex vivo, an effect modulated by oxygen tension, dose, and dose rate. Br. J. Radiol., 95 (1133), 20211150 (2022). doi: 10.1259/bjr.20211150
- Cooper C. R., Jones D. J. L., Jones G. D. D., and Petersson K. Comet assay profiling of FLASH-induced damage: mechanistic insights into the effects of FLASH irradiation. Int. J. Mol. Sci., 24 (8), 7195 (2023). doi: 10.3390/ijms24087195
- Tavakkoli A. D., Clark M. A., Kheirollah A., Sloop A. M., Soderholm H. E., Daniel N. J., Petusseau A. F., Huang Y. H., Thomas C. R. Jr., Jarvis L. A., Zhang R., Pogue B. W., Gladstone D. J., and Hoopes P. J. Anesthetic Oxygen Use and Sex Are Critical Factors in the FLASH Sparing Effect. Adv. Rad. Oncol., 9 (6), 101492 (2024). doi: 10.1016/j.adro.2024.101492
- Gaide O., Herrera F., Jeanneret Sozzi W., Goncalves Jorge P., Kinj R., Bailat C., Duclos F., Bochud F., Germond J. F., Gondre M., Boelhen T., Schiappacasse L., Ozsahin M., Moeckli R., and Bourhis J. Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiotherapy and Oncology, 174 (9), 87–91 (2022). doi: 10.1016/j.radonc.2021.12.045
- Montay-Gruel P., Acharya M. M., Petersson K., Alikhani L., Yakkala C., Allen B. D., Ollivier J., Petit B., Jorge P. G., Syage A. R., Nguyen T. A., Baddour A. A. D., Lu C., Singh P., Moeckli R., Bochud F., Germond J.-F. F., Froidevaux P., Bailat C., Bourhis J., Vozenin M.-C. C., and Limoli C. L. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc. Natl. Acad. Sci. USA, 116 (22), 10943–10951 (2019). doi: 10.1073/pnas.1901777116
- Dokic I., Meister S., Bojcevski J., Tessonnier T., Walsh D., Knoll M., Mein S., Tang Z., Vogelbacher L., Rittmueller C., Moustafa M., Krunic D., Brons S., Haberer T., Debus J., Mairani A., and Abdollahi A. Neuroprotective effects of ultra-high dose rate FLASH Bragg peak proton irradiation. Int. J. Radiat. Oncol. Biol. Phys., 113 (3), 614–623 (2022). doi: 10.1016/j.ijrobp.2022.02.020
- Shukla S., Saha T., Rama N., Acharya A., Le T., Bian F., Donovan J., Tan L.A., Vatner R., Kalinichenko V., Mascia A., Perentesis J. P., and Kalin T. V. Ultrahigh dose-rate proton FLASH improves tumor control. Radiotherapy and Oncology, 186 (9), 109741 (2023). doi: 10.1016/j.radonc.2023.109741
- Rudigkeit S., Schmid T. E., Dombrowsky A. C., Stolz J., Bartzsch S., Chen C. B., Matejka N., Sammer M., Bergmaier A., Dollinger G., and Reindl J. Proton-FLASH: effects of ultra-high dose rate irradiation on an in-vivo mouse ear model. Sci. Rep., 14 (1), 1418 (2024). doi: 10.1038/s41598-024-51951-6
- Yin L., Masumi U., Ota K., Sforza D. M., Miles D., Rezaee M., Wong J. W., Jia X., and Li H. Feasibility of synchrotron-based ultra-high dose rate (UHDR) proton irradiation with pencil beam scanning for FLASH research. Cancers, 16 (1), 221 (2024). doi: 10.3390/cancers16010221
- Yang G., Lu C., Mei Z., Sun X., Han J., Qian J., Liang Y., Pan Z., Kong D., Xu S., Liu Z., Gao Y., Qi G., Shou Y., Chen S., Cao Z., Zhao Y. Y., Lin C., Zhao Y. Y., Geng Y., Ma W., and Yan X. Association of cancer stem cell radio-resistance under ultra-high dose rate FLASH irradiation with lysosome-mediated autophagy. Front. Cell Develop. Biol., 9 (4), 672693 (2021). doi: 10.3389/fcell.2021.672693
- Liu G., Zhao L., Li X., Zhang S., Dai S., Lu X., and Ding X. A novel ultrahigh-dose-rate proton therapy technology: spot-scanning proton arc therapy + FLASH (SPLASH). Int. J. Radiat. Oncol. Biol. Phys., 117 (3), 730–737 (2023). doi: 10.1016/j.ijrobp.2023.05.012
- Blain G., Vandenborre J., Villoing D., Fiegel V., Fois G. R., Haddad F., Koumeir C., Maigne L., Metivier V., Poirier F., Potiron V., Supiot S., Servagent N., Delpon G., and Chiavassa S. Proton irradiations at ultrahigh dose rate vs. conventional dose rate: strong impact on hydrogen peroxide yield. Radiat. Res., 198 (3), 318–324 (2022). doi: 10.1667/RADE-22-00021.1
- Metzkes-Ng J., Brack F. E., Kroll F., Bernert C., Bock S., Bodenstein E., Brand M., Cowan T. E., Gebhardt R., Hans S., Helbig U., Horst F., Jansen J., Kraft S. D., Krause M., Lesmann E., Lock S., Pawelke J., Puschel T., Reimold M., Rehwald M., Richter C., Schlenvoigt H. P., Schramm U., Schurer M., Seco J., Szabo E. R., Umlandt M. E. P., Zeil K., Ziegler T., and Beyreuther E. The Dresden platform is a research hub for ultra-high dose rate radiobiology. Sci. Rep., 13 (1), 20611 (2023). doi: 10.1038/s41598-023-46873-8
- Labarbe R., Hotoiu L., Barbier J., and Favaudon V. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiotherapy and Oncology, 153 (12), 303–310 (2020). doi: 10.1016/j.radonc.2020.06.001
- Spitz D. R., Buettner G. R., Petronek M. S., St-Aubin J. J., Flynn R. T., Waldron T. J., and Limoli C. L. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiotherapy and Oncology, 139 (10), 23–27 (2019). doi: 10.1016/j.radonc.2019.03.028
- Bertho A., Iturri L., and Prezado Y. Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. Int. Rev. Cell Mol. Biol., 376, 37–68 (2023). doi: 10.1016/bs.ircmb.2022.11.005
- Daniels M. and Wigg E. Oxygen as a primary species in radiolysis of water. Science (New York), 153 (3743), 1533–1534 (1966). doi: 10.1126/science.153.3743.1533
- Buxton G. V., Greenstock C. L., Helman W. P., and Ross A. B. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (・OH/・O−) in aqueous-solution. J. Phys. Chem. Refer. Data, 17 (2), 513−886 (1988). doi: 10.1063/1.555805
- Pastina B. and LaVerne J. A. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A, 105 (40), 9316–9322 (2001). doi: 10.1021/jp012245j
- Lennicke C. and Cocheme H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell, 81 (18), 3691–3707 (2021). doi: 10.1016/j.molcel.2021.08.018
- Hu S. and Shao C. Research progress of radiation induced bystander and abscopal effects in normal tissue. Rad. Med. Protection, 1 (2), 69–74 (2020). doi: 10.1016/j.radmp.2020.04.001
- Lai Y., Jia X., and Chi Y. Modeling the effect of oxygen on the chemical stage of water radiolysis using GPUbased microscopic Monte Carlo simulations, with an application in FLASH radiotherapy. Phys. Med. Biol., 66 (2), 25004 (2021). doi: 10.1088/1361-6560/abc93b
- Domnanich K. A. and Severin G. W. A model for radiolysis in a flowing-water target during high-intensity proton irradiation. ACS Omega, 7 (29), 25860–25873 (2022). doi: 10.1021/acsomega.2c03540
- Pimblott S. M. and LaVerne J. A. Stochastic simulation of the electron radiolysis of water and aqueous solutions. J. Phys. Chem. A, 101 (33), 5828–5838 (1997). doi: 10.1021/jp970637d
- Jansen J., Knoll J., Beyreuther E., Pawelke J., Skuza R., Hanley R., Brons S., Pagliari F., and Seco J. Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions. Med. Phys., 48 (7), 3982–3990 (2021). doi: 10.1002/mp.14917
- Meesungnoen J. and Jay-Gerin J.-P. High-LET ion radiolysis of water: oxygen production in tracks. Radiat. Res., 171 (3), 379–386 (2009). doi: 10.1667/RR1468.1
- Jay-Gerin J.-P. P. Ultra-high dose-rate (FLASH) radiotherapy: Generation of early, transient, strongly acidic spikes in the irradiated tumor environment. Cancer/Radiothйrapie, 24 (4), 332–334 (2020). doi: 10.1016/j.canrad.2019.11.004
- Mladenova V., Mladenov E., Stuschke M., and Iliakis G. DNA damage clustering after ionizing radiation and consequences in the processing of chromatin breaks. Molecules, 27 (5), (2022). doi: 10.3390/molecules27051540
- Hada M. and Sutherland B. M. Spectrum of complex DNA damages depends on the incident radiation. Radiat. Res., 165 (2), 223–230 (2006). doi: 10.1667/RR3498.1
- Hada M. and Georgakilas A. G. Formation of clustered DNA damage after high-LET irradiation: a review. J. Radiat. Res., 49 (3), 203–210 (2008). doi: 10.1269/jrr.07123
- Goodarzi A. A. and Jeggo P. A. Irradiation induced foci (IRIF) as a biomarker for radiosensitivity. Mutation Res. 736 (1–2), 39–47 (2012). doi: 10.1016/j.mrfmmm.2011.05.017
- Auer S., Hable V., Greubel C., Drexler G. A., Schmid T. E., Belka C., Dollinger G., and Friedl A. A. Survival of tumor cells after proton irradiation with ultrahigh dose rates. Radiat. Oncol., 6 (1), 139 (2011). doi: 10.1186/1748-717X-6-139
- Beddok A., Fouillade C., Quelennec E., and FavaudonV. OC-0030: In vitro study of FLASH vs. conventional dose-rate irradiation: Cell viability and DNA damage repair. Radiotherapy and Oncology, 123 (S1), S9–S10 (2017). doi: 10.1016/S0167-8140(17)30474-7
- Adrian G., Konradsson E., Beyer S., Wittrup A., Butterworth K. T., McMahon S. J., Ghita M., Petersson K., and Ceberg C. Cancer cells can exhibit a sparing FLASH effect at low doses under normoxic in vitro-conditions. Front. Oncol., 11 (7), 686142 (2021). doi: 10.3389/fonc.2021.686142
- Kim Y.-E., Gwak S.-H., Hong B.-J., Oh J.-M., Choi H.-S., Kim M. S., Oh D., Lartey F. M., Rafat M., Schuler E., Kim H.-S., von Eyben R., Weissman I. L., Koch C. J., Maxim P. G., Loo Jr. B. W., and Ahn G.-O. Effects of Ultra-high doserate FLASH irradiation on the tumor microenvironment in lewis lung carcinoma: role of myosin light chain. Int. J. Radiat. Oncol. Biol. Phys., 109 (5), 1440–1453 (2021). doi: 10.1016/j.ijrobp.2020.11.012
- Akulinichev S. V., Glukhov S. I., Gavrilov Y. K., Kokontsev D. A., Kuznetsova E. A., Martynova V. V., and Yakovlev I. A. The Flash Mode of Proton Irradiation in the Bragg Peak Partly Spares the Embryogenesis of the Quail. BioRxiv, 2024.01.27.577528 (2024). doi: 10.1101/2024.01.27.577528
- Jiao Y., Cao F., and Liu H. Radiation-induced Cell Death and Its Mechanisms. Health Phys., 123 (5), 376–386 (2022). doi: 10.1097/HP.0000000000001601
- Park W., Wei S., Kim B.-S., Kim B., Bae S.-J., ChaeY. C., Ryu D., and Ha K.-T. Diversity and complexity of cell death: a historical review. Exp. Mol. Med., 55 (8), 1573–1594 (2023). doi: 10.1038/s12276-023-01078-x
- Akulinichev S. V., Gavrilov Y. K., Glukhov S. I., Ivanov A. V., Kokontsev D. A., Kulinich T. M., Kuznetsova E. A., Martynova V. V., and Yakovlev I. A. Analysis of Cell Response to Ultrahigh Dose-Rate Proton Irradiation. Bull. Russ. Acad. Sci.: Physics, 87 (8), 1221–1225 (2023). doi: 10.3103/S1062873823702830
- Paganetti H. A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front. Oncol., 13 (8), 1201500 (2023). doi: 10.3389/fonc.2023.1201500
- Kanike V., Meesungnoen J., and Jay-Gerin J.-P. P. Acid spike effect in spurs/tracks of the low/high linear energy transfer radiolysis of water: potential implications for radiobiology. RSC Advances, 5 (54), 43361–43370 (2015). doi: 10.1039/c5ra07173a
- Bock F. J. and Tait S. W. G. Mitochondria as multifaceted regulators of cell death. Nature Rev. Mol. Cell Biol., 21 (2), 85–100 (2020). doi: 10.1038/s41580-019-0173-8
- Tuomela K., Mukherjee D., Ambrose A. R., Harikrishnan A., Mole H., Hurlstone A., Onfelt B., Honeychurch J., and Davis D. M. Radiotherapy transiently reduces the sensitivity of cancer cells to lymphocyte cytotoxicity. Proc. Natl. Acad. Sci. USA, 119 (3), e2111900119 (2022). doi: 10.1073/pnas.2111900119
- Кулинич Т. М., Крастелев Е. Г., Быков Ю. А., Смирнов В. П., Шишкин А. М., Иванов А. В. и Боженко В. К. Исследование уровня двунитевых разрывов ДНК и механизмов клеточной гибели при воздействии на клетки рака легкого и меланомы фотонного излучения сверхвысокой мощности. Вестн. РГМУ, № 5, 76–82 (2018). doi: 10.24075/vrgmu.2018.066
- Akulinichev S. V., Vasiliev V. N., Gavrilov Y. K., Kokontsev D. A., Kravchuk L. V., Martynova V. V., and Yakovlev I. A. Possibilities of Proton FLASH Therapy on the Accelerator at the Russian Academy of Sciences’ Institute for Nuclear Research. Bull. Russ. Acad. Sci.: Physics, 84 (11), 1325–1329 (2020). doi: 10.3103/S1062873820110039
- Рзянина А. В., Мицын Г. В., Агапов А. В., Грицкова Е. А., Углова С. С., Гаевский В. Н., Шипулин К. Н. и Хасенова И. Исследование выживаемости опухолевых клеток линии А549 при облучении протонным пучком во флэш- и стандартном режимах (Препринт ОИЯИ, Дубна, 2023). http://www1.jinr.ru/Preprints/2023/31(P192023-31).pdf.
Supplementary files
