Numerical Simulation of the Diffusion of Electroactive Molecule in Biosimilar Hydrogel Media
- Authors: Cherenkov I.A1, Krivilev M.D1,2, Ignat'eva M.M1, Emel'yanova A.Y.1, Sergeev V.G1
-
Affiliations:
- Udmurt State University
- Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 69, No 5 (2024)
- Pages: 939-948
- Section: Molecular biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/676108
- DOI: https://doi.org/10.31857/S0006302924050013
- EDN: https://elibrary.ru/MLQQQN
- ID: 676108
Cite item
Abstract
About the authors
I. A Cherenkov
Udmurt State University
Email: ivch75@yandex.ru
Izhevsk, 426034 Russia
M. D Krivilev
Udmurt State University; Udmurt Federal Research Center, Ural Branch of the Russian Academy of SciencesIzhevsk, 426034 Russia; Izhevsk, 426067 Russia
M. M Ignat'eva
Udmurt State UniversityIzhevsk, 426034 Russia
A. Yu Emel'yanova
Udmurt State UniversityIzhevsk, 426034 Russia
V. G Sergeev
Udmurt State UniversityIzhevsk, 426034 Russia
References
- Giuseppe M. D., Law N., Webb B., Macrae A. R., Liew L. J., Sercombe T. B., Dilley R. J., and Doyle B. J. Mechanical behaviour of alginate-gelatin hydrogels for 3D-bioprinting. J. Mech. Behav. Biomed. Mater., 79, 150– 157 (2018). doi: 10.1016/j.jmbbm.2017.12.018
- Jia J., Richards D. J., Pollard S., Tan Y., Rodriguez J., Visconti R. P., Trusk T. C., Yost M. J., Yao H., Markwald R. R., and Mei Y. Engineering alginate as bioink for bioprinting. Acta Biomater., 10 (10), 4323–4331 (2014). doi: 10.1016/j.actbio.2014.06.034
- Sonaye S. Y., Ertugral E. G., Kothapalli C. R., and Sikder P. Extrusion 3D (bio)printing of alginate-gelatinbased composite scaffolds for skeletal muscle tissue engineering. Materials (Basel), 15 (22), 7945 (2022). doi: 10.3390/ma15227945
- Shams E., Barzad M. S., Mohamadnia S., Tavakoli O., and Mehrdadfar A. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J. Biomater. Appl., 37 (2), 355–372 (2022). doi: 10.1177/08853282221085690
- Pahlevanzadeh F., Mokhtari H., Bakhsheshi-Rad H. R., Emadi R., Kharaziha M., Valiani A., Poursamar S. A., Ismail A. F., RamaKrishna S., and Berto F. Recent trends in three-dimensional bioinks based on alginate for biomedical applications. Materials (Basel), 13 (18), 3980 (2020). doi: 10.3390/ma13183980
- Sales F. C., Iost R. M., Martins M. V., Almeida M. C., and Crespilho F. N. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab. Chip., 13 (3), 468–474 (2013). doi: 10.1039/c2lc41007a
- Schaetzle O., Barrière F., and Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy Environ. Sci., 1 (6), 607–620 (2008). doi: 10.1039/B810642H
- Katz E., Shipway A. N., and Willner I. Biochemical fuel cells. In Handbook of fuel cells – fundamentals, technology and applications. Ed. by W. Vielstich, H. A. Gasteiger, and A. Lamm (John Wiley & Sons, New York, N.Y., 2003), vol. 1, pp. 355–381.
- Левич В. Г. Физико-химическая гидродинамика (Институт компьютерных исследований, М.−Ижевск, 2016).
- Burla F., Sentjabrskaja T., Pletikapic G., van Beugen J., and Koenderink G. H. Particle diffusion in extracellular hydrogels. Soft Matter., 16 (5), 1366–1376 (2020). doi: 10.1039/c9sm01837a
- Черенков И. А., Кривилев М. Д., Игнатьева М. М., Вахрушева Е. В. и Сергеев В. Г. Биоэлектрохимическое моделирование диффузии толуидинового синего в гидрогеле в присутствии пероксидазы и трипсина. Биофизика, 66 (5) 865–870 (2021). doi: 10.31857/S0006302921050045, EDN: NUKQSU
- Hrbac J., Halouzka V., Trnkova L., and Vacek J. eL-Chem Viewer: A freeware package for the analysis of electroanalytical data and their post-acquisition processing. Sensors (Basel), 14 (8), 13943–13954 (2014). doi: 10.3390/s140813943
- Электроаналитические методы. Под ред. Ф. Шольц (БИНОМ. Лаборатория знаний, М., 2010).
- G oudie M. J., Ghuman A. P., Collins S. B., Pidaparti R. M., and Handa H. Investigation of diffusion characteristics through microfluidic channels for passive drug delivery applications. J. Drug Deliv., 2016, 7913616 (2016). doi: 10.1155/2016/7913616
- Новаковская М. В., Игнатьева М. М., Черенков И. А. Влияние липополисахарида сальмонеллы на диффузию толуидинового синего в альгинатном гидрогеле. Актуальные вопросы биологической физики и химии, 7 (3), 458–461 (2022). doi: 10.29039/rusjbpc.2022.0544, EDN: PTNZPN
Supplementary files
