Numerical Simulation of the Diffusion of Electroactive Molecule in Biosimilar Hydrogel Media

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on experimental data of cyclic voltammetry, the values of the diffusion coefficients for toluidine blue in alginate hydrogel, gelatine hydrogel and alginate-gelatine hydrogels were obtained. Using the experimental values of the coefficients in a numerical model, the values of the recovery of flows have been calculated showing them consistent with what was the experimental. It is proposed to use the period in time during which the value of the flow force reaches the value of steady state flow force as an indicator of the diffusion properties of the hydrogel medium. The findings of this study can be used for the development of methods for the evaluation of the diffusion properties of hydrogel media: bioinks and tissue-engineered structures.

About the authors

I. A Cherenkov

Udmurt State University

Email: ivch75@yandex.ru
Izhevsk, 426034 Russia

M. D Krivilev

Udmurt State University; Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences

Izhevsk, 426034 Russia; Izhevsk, 426067 Russia

M. M Ignat'eva

Udmurt State University

Izhevsk, 426034 Russia

A. Yu Emel'yanova

Udmurt State University

Izhevsk, 426034 Russia

V. G Sergeev

Udmurt State University

Izhevsk, 426034 Russia

References

  1. Giuseppe M. D., Law N., Webb B., Macrae A. R., Liew L. J., Sercombe T. B., Dilley R. J., and Doyle B. J. Mechanical behaviour of alginate-gelatin hydrogels for 3D-bioprinting. J. Mech. Behav. Biomed. Mater., 79, 150– 157 (2018). doi: 10.1016/j.jmbbm.2017.12.018
  2. Jia J., Richards D. J., Pollard S., Tan Y., Rodriguez J., Visconti R. P., Trusk T. C., Yost M. J., Yao H., Markwald R. R., and Mei Y. Engineering alginate as bioink for bioprinting. Acta Biomater., 10 (10), 4323–4331 (2014). doi: 10.1016/j.actbio.2014.06.034
  3. Sonaye S. Y., Ertugral E. G., Kothapalli C. R., and Sikder P. Extrusion 3D (bio)printing of alginate-gelatinbased composite scaffolds for skeletal muscle tissue engineering. Materials (Basel), 15 (22), 7945 (2022). doi: 10.3390/ma15227945
  4. Shams E., Barzad M. S., Mohamadnia S., Tavakoli O., and Mehrdadfar A. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J. Biomater. Appl., 37 (2), 355–372 (2022). doi: 10.1177/08853282221085690
  5. Pahlevanzadeh F., Mokhtari H., Bakhsheshi-Rad H. R., Emadi R., Kharaziha M., Valiani A., Poursamar S. A., Ismail A. F., RamaKrishna S., and Berto F. Recent trends in three-dimensional bioinks based on alginate for biomedical applications. Materials (Basel), 13 (18), 3980 (2020). doi: 10.3390/ma13183980
  6. Sales F. C., Iost R. M., Martins M. V., Almeida M. C., and Crespilho F. N. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab. Chip., 13 (3), 468–474 (2013). doi: 10.1039/c2lc41007a
  7. Schaetzle O., Barrière F., and Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy Environ. Sci., 1 (6), 607–620 (2008). doi: 10.1039/B810642H
  8. Katz E., Shipway A. N., and Willner I. Biochemical fuel cells. In Handbook of fuel cells – fundamentals, technology and applications. Ed. by W. Vielstich, H. A. Gasteiger, and A. Lamm (John Wiley & Sons, New York, N.Y., 2003), vol. 1, pp. 355–381.
  9. Левич В. Г. Физико-химическая гидродинамика (Институт компьютерных исследований, М.−Ижевск, 2016).
  10. Burla F., Sentjabrskaja T., Pletikapic G., van Beugen J., and Koenderink G. H. Particle diffusion in extracellular hydrogels. Soft Matter., 16 (5), 1366–1376 (2020). doi: 10.1039/c9sm01837a
  11. Черенков И. А., Кривилев М. Д., Игнатьева М. М., Вахрушева Е. В. и Сергеев В. Г. Биоэлектрохимическое моделирование диффузии толуидинового синего в гидрогеле в присутствии пероксидазы и трипсина. Биофизика, 66 (5) 865–870 (2021). doi: 10.31857/S0006302921050045, EDN: NUKQSU
  12. Hrbac J., Halouzka V., Trnkova L., and Vacek J. eL-Chem Viewer: A freeware package for the analysis of electroanalytical data and their post-acquisition processing. Sensors (Basel), 14 (8), 13943–13954 (2014). doi: 10.3390/s140813943
  13. Электроаналитические методы. Под ред. Ф. Шольц (БИНОМ. Лаборатория знаний, М., 2010).
  14. G oudie M. J., Ghuman A. P., Collins S. B., Pidaparti R. M., and Handa H. Investigation of diffusion characteristics through microfluidic channels for passive drug delivery applications. J. Drug Deliv., 2016, 7913616 (2016). doi: 10.1155/2016/7913616
  15. Новаковская М. В., Игнатьева М. М., Черенков И. А. Влияние липополисахарида сальмонеллы на диффузию толуидинового синего в альгинатном гидрогеле. Актуальные вопросы биологической физики и химии, 7 (3), 458–461 (2022). doi: 10.29039/rusjbpc.2022.0544, EDN: PTNZPN

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences