FT-IR Difference Spectroscopy for Studying the Secondary Structure of the Membrane Protein Bacteriorhodopsin When Submitted to Microwave Radiation at 8–18 GHz

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fourier transform infrared (FTIR) difference spectroscopy was used to study the effects of microwaves radiation on the structure of bacteriorhodopsin under light condition. The detailed FTIR spectral analysis revealed the pronounced structural changes in amide I and amide II regions as well as the rearrangements of the hydrogen-bonding network. Well-resolved peaks of amide bands allow accurate determination of two different components (α-I and α-II) of an α-helical conformation of opsin. Irreversible conformational changes of bacteriorhodopsin in purple membranes, detected by FTIR difference spectroscopy, suggest that regardless of temperature, microwaves induce protein structural rearrangements.

About the authors

E. L Terpugov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: EL_Terpugov@rambler.ru
Pushchino, Moscow Region, 142290 Russia

O. V Degtyareva

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, 142290 Russia

E. E Fesenko

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, 142290 Russia

References

  1. Lozier R. H., Bogomolni R. A, and Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. Biophys J., 15 (9), 955–962 (1975). doi: 10.1016/S0006-3495(75)85875-9
  2. Ernst O. P., Lodowski D. T., Elstner M., Hegemann P., Brown L. S., and Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev., 114 (1), 126–163 (2014). doi: 10.1021/cr4003769
  3. Fahmy K. and Sakmar T. P., Interdisciplinary biophysical studies of membrane proteins bacteriorhodoppsin and rhodopsin. Biophys. Rev., 15, 111 (2023). doi: 10.1007/s12551-022-01003-y
  4. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., and Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol., 213 (14), 899– 929 (1990). doi: 10.1016/S0022-2836(05)80271-2
  5. Krimm S. and Dwivedi A. M. Infrared spectrum of the purple membrane: clue to a proton conduction mechanism? Science, 216 (4544), 407–408 (1982). doi: 10.1126/science.6280277
  6. Mathies R. A., Lin S. W., Ames J. B., and Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu. Rev. Biophys. Biophys. Chem., 20, 491–518 (1991). doi: 10.1146/annurev.bb.20.060191.002423
  7. Birge R. R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta, 1016 (3), 293-327 (1990). doi: 10.1016/0005-2728(90)90163-x
  8. Balashov S. P. Photoreactions of the photointermediates of bacteriorhodopsin. Isr. J. Chem., 35 (3–4), 415 (1995).
  9. Lanyi J . K . M echanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J. Biol. Chem, 272 (50), 31209–31212 (1997). doi: 10.1074/jbc.272.50.31209
  10. Birge R. R., Govender D. S. K., Izgi K. C., and Tan E. H. L. Role of calcium in the proton pump of bacteriorhodopsin. microwave evidence for a cationgated mechanism. J. Phys. Chem. B., 100 (23), 9990– 10004 (1996). doi: 10.1021/jp953669e
  11. Terpugov E. L., Degtyareva O. V., and Fesenko E. E. Microwave-induced structural changes in bacteriorhodopsin: studies using optical and Fourier transform infrared difference spectroscopy. Biophysics, 63 (5), 705– 711 (2018). doi: 10.1134/S0006350918050226
  12. Kandori H. Biophysics of rhodopsins and optogenetics. Biophys. Rev., 12 (2), 355–361 (2020). doi: 10.1007/s12551-020-00645-0
  13. Saeedi P., Moosaabadi J. M., Sebtahmadi S. S., Mehrabadi J. F., Behmanesh M., and Mekhilef S. Potential applications of bacteriorhodopsin mutants. Bioengineered, 3, 326–328 (2012). doi: 10.4161/bioe.21445
  14. Oesterhelt D. and Stoechenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol., 31, 667–678 (1974).
  15. O’Brien F. E. M. The control of humidity by saturated salt solutions, J. Sci. Instr., 25 (3), 73–76 (1948). doi: 10.1088/0950-7671/25/3/30
  16. Terpugov E. L., and Degtyareva O. V. FTIR emission spectra of bacteriorhodopsin in a vibrational excitedstate. Biochemistry (Moscow), 66 (11), 1315–1322 (2001). doi: 10.1023/A:1013195605416
  17. Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta, 1767 (9), 1073–1101 (2007). doi: 10.1016/j.bbabio.2007.06.004
  18. Karjalainen E.-L. and Barth A. Vibrational coupling between helices influences the amide I infrared absorption of proteins. Application to bacteriorhodopsin and rhodopsin. J. Phys. Chem. B., 116 (15), 4448–56 (2012). doi: 10.1021/jp300329k
  19. Rothschild K. J. and Clark N. A. Anomalous amide I infrared absorption of purple membrane. Science, 204 (4390), 311–312 (1979). doi: 10.1126/science.432645
  20. Taneva S. G., Caaveiro J. M. M., Muga A., and Coñi F. M. A pathway for the thermal destabilization of bacteriorhodopsin. FEBS Lett., 367 (3), 297–300 (1995). doi: 10.1016/0014-5793(95)00570-Y
  21. Torres J., Sepulcre F., and Padr�s E., Conformational Changes in Bacteriorhodopsin Associated with Protein-Protein Interactions: a functional alpha I-alpha II helix switch? Biochemistry, 34 (50), 16320–16326 (1995). doi: 10.1021/bi00050a012
  22. Barnett S. M., Edwards C. M., Butler I. S., and Levin I. W. Pressure-induced transmembrane (II)to (I)-helical conversion in bacteriorhodopsin: an infrared spectroscopic study. J. Phys. Chem. B., 101 (46), 9421–9424 (1997). doi: 10.1021/jp972086x
  23. Wang J. and El-Sayed M. A. Temperature jump-induced secondary structural change of the membrane protein bacteriorhodopsin in the premelting temperature region: a nanosecond time-resolved Fourier transform infrared study. Biophys. J., 76 (5), 2777–2783 (1999). doi: 10.1016/s0006-3495(99)77431-x
  24. Byler D. M. and Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25 (3), 469–487(1986). doi: 10.1002/bip.360250307
  25. Surewicz W. K. and Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta, 952 (2), 115– 130 (1988). doi: 10.1016/0167-4838(88)90107-0
  26. Maeda A., Sasaki J., Shichida Y., and Yoshizawa T. Water structure changes in bacteriorhodopsin photocycle: Analysis by Fourier transform infrared spectroscopy. Biochemistry, 31 (2), 462–467 (1992). doi: 10.1021/bi00117a023
  27. Fischer W. B., Sonar S, Marti T., Khorana H. G., and Rothschild K. J. Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction. Biochemistry, 33 (43), 12757–12762 (1994). doi: 10.1021/bi00209a005
  28. Jackson M. and Mantsch H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol., 30 (2), 95–120 (1995). doi: 10.3109/10409239509085140
  29. Braiman M. S., Mogi T., Marti T., Stern L. J., Khorana H. G., and Rothschild K. J. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry, 27 (23), 8516–8520 (1988). doi: 10.1021/bi00423a002
  30. Krimm S. and Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem., 38, 181–364 (1986). doi: 10.1016/s0065-3233(08)60528-8
  31. Torii H. and Kawanaka M. Secondary structure dependence and hydration effect of the infrared intensity of the amide ii mode of peptide chains. J. Phys. Chem. B., 120 (8), 1624–1634 (2016). doi: 10.1021/acs.jpcb.5b08258
  32. Porcelli M., Cacciapuoti G., Fusco S., Massa R., d’Ambrosio G., Bertoldo C., De Rosa M., and Zappia V. Non-thermal effects of microwaves on proteins: thermophilic enzymes as model system. FEBS Lett., 402 (2–3), 102–106 (1997). doi: 10.1016/s0014-5793(96)01505-0
  33. Bohr H. and Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E, 61 (4), 4310–4314 (2000). doi: 10.1103/PhysRevE.61.4310
  34. Fesenko E. E., Geletyuk V.I., Kazachenko V. N., and Chemeris N. K. Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Lett., 366 (1), 49–52 (1995). doi: 10.1016/0014-5793(95)98629-w
  35. Klink B. U., Winter R., Engelhard M., and Chizhov I. Pressure dependence of the photocycle kinetics of bacteriorhodopsin. Biophys. J., 83 (6), 3490–3498 (2002). doi: 10.1016/S0006-3495(02)75348-4
  36. Kouyama T., Bogomolni R. A., and Stoeckenius W. Photoconversion from the light-adapted to the darkadapted state of bacteriorhodopsin. Biophys. J., 48 (2), 201 (1985). doi: 10.1016/S0006-3495(85)83773-5
  37. Zhao X. and Wang C., The non-thermal biological effects and mechanisms of microwave exposure. Inter. J. Rad. Res., 19 (3), 483–494 (2021). doi: 10.29252/ijrr.19.2.483
  38. Adair R. K. Biophysical limits on athermal effects of RF and microwave radiation Bioelectromagnetics, 24 (1), 39–48 (2002). doi: 10.1002/bem.10061
  39. de Pomerai D. I., Smith B., Dawe A., North K., Smith T., Archer D. B., Duce I. R., Jones D., and Candido P. M. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett., 543 (1–3), 93–97 (2003). doi: 10.1016/S0014-5793(03)00413-7
  40. Calabrò E. and Magazù S. The α-helix alignment of proteins in water solution toward a high-frequency electromagnetic field: A FTIR spectroscopy study. Electromagn. Biol. Med., 36 (3), 279–288 (2017). doi: 10.1080/15368378.2017.1328691
  41. Copty A. B., Neve-Oz Y., Barak I., Golosovsky M., and Davidov D. Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophys. J., 91 (4), 1413–1423 (2006). doi: 10.1529/biophysj.106.084111
  42. Dawkins A. W. J., Nightingale N. R. V., South G. P., Sheppard R. J., and Grant E. H. The role of water in microwave absorption by biological material with particular reference to microwave hazards. Phys. Med. Biol., 24 (6), 1168 (1979). doi: 10.1088/0031-9155/24/6/007
  43. Deng H., Huang L., Callender R., and Ebrey T. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. Biophys J., 66 (4), 1129–1136 (1994). doi: 10.1016/S0006-3495(94)80893-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences