FT-IR Difference Spectroscopy for Studying the Secondary Structure of the Membrane Protein Bacteriorhodopsin When Submitted to Microwave Radiation at 8–18 GHz
- Authors: Terpugov E.L1, Degtyareva O.V1, Fesenko E.E1
-
Affiliations:
- Institute of Cell Biophysics, Russian Academy of Sciences
- Issue: Vol 69, No 5 (2024)
- Pages: 968-978
- Section: Molecular biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/676114
- DOI: https://doi.org/10.31857/S0006302924050048
- EDN: https://elibrary.ru/MKPXBP
- ID: 676114
Cite item
Abstract
Fourier transform infrared (FTIR) difference spectroscopy was used to study the effects of microwaves radiation on the structure of bacteriorhodopsin under light condition. The detailed FTIR spectral analysis revealed the pronounced structural changes in amide I and amide II regions as well as the rearrangements of the hydrogen-bonding network. Well-resolved peaks of amide bands allow accurate determination of two different components (α-I and α-II) of an α-helical conformation of opsin. Irreversible conformational changes of bacteriorhodopsin in purple membranes, detected by FTIR difference spectroscopy, suggest that regardless of temperature, microwaves induce protein structural rearrangements.
About the authors
E. L Terpugov
Institute of Cell Biophysics, Russian Academy of Sciences
Email: EL_Terpugov@rambler.ru
Pushchino, Moscow Region, 142290 Russia
O. V Degtyareva
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Moscow Region, 142290 Russia
E. E Fesenko
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Moscow Region, 142290 Russia
References
- Lozier R. H., Bogomolni R. A, and Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. Biophys J., 15 (9), 955–962 (1975). doi: 10.1016/S0006-3495(75)85875-9
- Ernst O. P., Lodowski D. T., Elstner M., Hegemann P., Brown L. S., and Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev., 114 (1), 126–163 (2014). doi: 10.1021/cr4003769
- Fahmy K. and Sakmar T. P., Interdisciplinary biophysical studies of membrane proteins bacteriorhodoppsin and rhodopsin. Biophys. Rev., 15, 111 (2023). doi: 10.1007/s12551-022-01003-y
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., and Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol., 213 (14), 899– 929 (1990). doi: 10.1016/S0022-2836(05)80271-2
- Krimm S. and Dwivedi A. M. Infrared spectrum of the purple membrane: clue to a proton conduction mechanism? Science, 216 (4544), 407–408 (1982). doi: 10.1126/science.6280277
- Mathies R. A., Lin S. W., Ames J. B., and Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu. Rev. Biophys. Biophys. Chem., 20, 491–518 (1991). doi: 10.1146/annurev.bb.20.060191.002423
- Birge R. R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta, 1016 (3), 293-327 (1990). doi: 10.1016/0005-2728(90)90163-x
- Balashov S. P. Photoreactions of the photointermediates of bacteriorhodopsin. Isr. J. Chem., 35 (3–4), 415 (1995).
- Lanyi J . K . M echanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J. Biol. Chem, 272 (50), 31209–31212 (1997). doi: 10.1074/jbc.272.50.31209
- Birge R. R., Govender D. S. K., Izgi K. C., and Tan E. H. L. Role of calcium in the proton pump of bacteriorhodopsin. microwave evidence for a cationgated mechanism. J. Phys. Chem. B., 100 (23), 9990– 10004 (1996). doi: 10.1021/jp953669e
- Terpugov E. L., Degtyareva O. V., and Fesenko E. E. Microwave-induced structural changes in bacteriorhodopsin: studies using optical and Fourier transform infrared difference spectroscopy. Biophysics, 63 (5), 705– 711 (2018). doi: 10.1134/S0006350918050226
- Kandori H. Biophysics of rhodopsins and optogenetics. Biophys. Rev., 12 (2), 355–361 (2020). doi: 10.1007/s12551-020-00645-0
- Saeedi P., Moosaabadi J. M., Sebtahmadi S. S., Mehrabadi J. F., Behmanesh M., and Mekhilef S. Potential applications of bacteriorhodopsin mutants. Bioengineered, 3, 326–328 (2012). doi: 10.4161/bioe.21445
- Oesterhelt D. and Stoechenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol., 31, 667–678 (1974).
- O’Brien F. E. M. The control of humidity by saturated salt solutions, J. Sci. Instr., 25 (3), 73–76 (1948). doi: 10.1088/0950-7671/25/3/30
- Terpugov E. L., and Degtyareva O. V. FTIR emission spectra of bacteriorhodopsin in a vibrational excitedstate. Biochemistry (Moscow), 66 (11), 1315–1322 (2001). doi: 10.1023/A:1013195605416
- Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta, 1767 (9), 1073–1101 (2007). doi: 10.1016/j.bbabio.2007.06.004
- Karjalainen E.-L. and Barth A. Vibrational coupling between helices influences the amide I infrared absorption of proteins. Application to bacteriorhodopsin and rhodopsin. J. Phys. Chem. B., 116 (15), 4448–56 (2012). doi: 10.1021/jp300329k
- Rothschild K. J. and Clark N. A. Anomalous amide I infrared absorption of purple membrane. Science, 204 (4390), 311–312 (1979). doi: 10.1126/science.432645
- Taneva S. G., Caaveiro J. M. M., Muga A., and Coñi F. M. A pathway for the thermal destabilization of bacteriorhodopsin. FEBS Lett., 367 (3), 297–300 (1995). doi: 10.1016/0014-5793(95)00570-Y
- Torres J., Sepulcre F., and Padr�s E., Conformational Changes in Bacteriorhodopsin Associated with Protein-Protein Interactions: a functional alpha I-alpha II helix switch? Biochemistry, 34 (50), 16320–16326 (1995). doi: 10.1021/bi00050a012
- Barnett S. M., Edwards C. M., Butler I. S., and Levin I. W. Pressure-induced transmembrane (II)to (I)-helical conversion in bacteriorhodopsin: an infrared spectroscopic study. J. Phys. Chem. B., 101 (46), 9421–9424 (1997). doi: 10.1021/jp972086x
- Wang J. and El-Sayed M. A. Temperature jump-induced secondary structural change of the membrane protein bacteriorhodopsin in the premelting temperature region: a nanosecond time-resolved Fourier transform infrared study. Biophys. J., 76 (5), 2777–2783 (1999). doi: 10.1016/s0006-3495(99)77431-x
- Byler D. M. and Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25 (3), 469–487(1986). doi: 10.1002/bip.360250307
- Surewicz W. K. and Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta, 952 (2), 115– 130 (1988). doi: 10.1016/0167-4838(88)90107-0
- Maeda A., Sasaki J., Shichida Y., and Yoshizawa T. Water structure changes in bacteriorhodopsin photocycle: Analysis by Fourier transform infrared spectroscopy. Biochemistry, 31 (2), 462–467 (1992). doi: 10.1021/bi00117a023
- Fischer W. B., Sonar S, Marti T., Khorana H. G., and Rothschild K. J. Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction. Biochemistry, 33 (43), 12757–12762 (1994). doi: 10.1021/bi00209a005
- Jackson M. and Mantsch H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol., 30 (2), 95–120 (1995). doi: 10.3109/10409239509085140
- Braiman M. S., Mogi T., Marti T., Stern L. J., Khorana H. G., and Rothschild K. J. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry, 27 (23), 8516–8520 (1988). doi: 10.1021/bi00423a002
- Krimm S. and Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem., 38, 181–364 (1986). doi: 10.1016/s0065-3233(08)60528-8
- Torii H. and Kawanaka M. Secondary structure dependence and hydration effect of the infrared intensity of the amide ii mode of peptide chains. J. Phys. Chem. B., 120 (8), 1624–1634 (2016). doi: 10.1021/acs.jpcb.5b08258
- Porcelli M., Cacciapuoti G., Fusco S., Massa R., d’Ambrosio G., Bertoldo C., De Rosa M., and Zappia V. Non-thermal effects of microwaves on proteins: thermophilic enzymes as model system. FEBS Lett., 402 (2–3), 102–106 (1997). doi: 10.1016/s0014-5793(96)01505-0
- Bohr H. and Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E, 61 (4), 4310–4314 (2000). doi: 10.1103/PhysRevE.61.4310
- Fesenko E. E., Geletyuk V.I., Kazachenko V. N., and Chemeris N. K. Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Lett., 366 (1), 49–52 (1995). doi: 10.1016/0014-5793(95)98629-w
- Klink B. U., Winter R., Engelhard M., and Chizhov I. Pressure dependence of the photocycle kinetics of bacteriorhodopsin. Biophys. J., 83 (6), 3490–3498 (2002). doi: 10.1016/S0006-3495(02)75348-4
- Kouyama T., Bogomolni R. A., and Stoeckenius W. Photoconversion from the light-adapted to the darkadapted state of bacteriorhodopsin. Biophys. J., 48 (2), 201 (1985). doi: 10.1016/S0006-3495(85)83773-5
- Zhao X. and Wang C., The non-thermal biological effects and mechanisms of microwave exposure. Inter. J. Rad. Res., 19 (3), 483–494 (2021). doi: 10.29252/ijrr.19.2.483
- Adair R. K. Biophysical limits on athermal effects of RF and microwave radiation Bioelectromagnetics, 24 (1), 39–48 (2002). doi: 10.1002/bem.10061
- de Pomerai D. I., Smith B., Dawe A., North K., Smith T., Archer D. B., Duce I. R., Jones D., and Candido P. M. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett., 543 (1–3), 93–97 (2003). doi: 10.1016/S0014-5793(03)00413-7
- Calabrò E. and Magazù S. The α-helix alignment of proteins in water solution toward a high-frequency electromagnetic field: A FTIR spectroscopy study. Electromagn. Biol. Med., 36 (3), 279–288 (2017). doi: 10.1080/15368378.2017.1328691
- Copty A. B., Neve-Oz Y., Barak I., Golosovsky M., and Davidov D. Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophys. J., 91 (4), 1413–1423 (2006). doi: 10.1529/biophysj.106.084111
- Dawkins A. W. J., Nightingale N. R. V., South G. P., Sheppard R. J., and Grant E. H. The role of water in microwave absorption by biological material with particular reference to microwave hazards. Phys. Med. Biol., 24 (6), 1168 (1979). doi: 10.1088/0031-9155/24/6/007
- Deng H., Huang L., Callender R., and Ebrey T. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. Biophys J., 66 (4), 1129–1136 (1994). doi: 10.1016/S0006-3495(94)80893-8
Supplementary files
