Adsorption of Proteins onto Nitrocellulose Membranes from a Flowing Solution – Theory and Experiment
- Authors: Prusakov K.A1, Zamalutdinova S.V2, Sidorova A.E2, Bagrov D.V2
-
Affiliations:
- Yu.M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency of the Russian Federation
- M.V. Lomonosov Moscow State University
- Issue: Vol 69, No 5 (2024)
- Pages: 949-958
- Section: Molecular biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/676120
- DOI: https://doi.org/10.31857/S0006302924050029
- EDN: https://elibrary.ru/MLOHZK
- ID: 676120
Cite item
Abstract
Some analytical laboratory procedures involve passing the sample through a porous polymer membrane. In this process, the analyte binds to the surface of the membrane modified with a specific receptor layer and is then detected using optical or electrochemical signals. This paper presents an experimental and theoretical analysis of the binding patterns of the analyte to nitrocellulose membranes. Two cases are considered: specific binding of the analyte to antibodies immobilized on the membrane and non-specific adsorption of the analyte. It is shown that increasing the volume of the sample passed through the membrane leads to an increase in the amount of adsorbed analyte, and this can generally be used to improve the sensitivity of biosensors.
Keywords
About the authors
K. A Prusakov
Yu.M. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency of the Russian FederationMoscow, 119435 Russia
S. V Zamalutdinova
M.V. Lomonosov Moscow State UniversityMoscow, 119991 Russia
A. E Sidorova
M.V. Lomonosov Moscow State UniversityMoscow, 119991 Russia
D. V Bagrov
M.V. Lomonosov Moscow State University
Email: bagrov@mail.bio.msu.ru
Moscow, 119991 Russia
References
- Sule R., Rivera G., and Gomes A. V. Western blotting (immunoblotting): history, theory, uses, protocol and problems. BioTechniques, 75 (3), 99–114 (2023). doi: 10.2144/btn-2022-0034
- Chen X. and Shen J. Review of membranes in microfluidics. J. Chem. Technol. Biotechnol., 92 (2), 271–282 (2017). doi: 10.1002/jctb.5105
- Ishikawa E. Factors limiting the sensitivity of noncompetitive heterogeneous solid phase enzyme immunoassays. In Laboratory Techniques in Biochemistry and Molecular Biology. Ed. by P. C. van der Vliet and S. Pillai (Elsevier, 1999), V. 27, pp. 7–16. doi: 10.1016/S0075-7535(08)70563-1
- Mansfield M. A. Nitrocellulose membranes for lateral flow immunoassays: a technical treatise. In Lateral Flow Immunoassay. Ed. by R. Wong and H. Tse (Humana Press, 2009), pp. 1–19. doi: 10.1007/978-1-59745-240-3_6
- Pavlova E., Maslakova A., Prusakov K., and Bagrov D. Optical sensors based on electrospun membranes – principles, applications, and prospects for chemistry and biology. New J. Chem., 46 (18), 8356–8380 (2022). doi: 10.1039/D2NJ01821G
- Maslakova A., Prusakov K., Sidorova A., Pavlova E., Ramonova A., and Bagrov D. Pressure-driven sample flow through an electrospun membrane increases the analyte adsorption. Micro, 3 (2), 566–577 (2023). doi: 10.3390/micro3020038
- Hosseini S., Azari P., Aeinehvand M. M., Rothan H. A., Djordjevic I., Martinez-Chapa S. O., and Madou M. J. Intrant ELISA: A novel approach to fabrication of electrospun fiber mat-assisted biosensor platforms and their integration within standard analytical well plates. Appl. Sci., 6 (11), 336 (2016). doi: 10.3390/app6110336
- Prusakov K. A. and Bagrov D. V. Convection-diffusion-adsorption model for the description of the analyte-binding reactions on a membrane. Anal. Lett., 1– 17 (2024). doi: 10.1080/00032719.2023.2301503
- Frutiger A., Tanno A., Hwu S., Tiefenauer R. F., Vörös J., and Nakatsuka N. Nonspecific binding fundamental concepts and consequences for biosensing applications. Chem. Rev., 121 (13), 8095–8160 (2021). doi: 10.1021/acs.chemrev.1c00044
- Squires T. M., Messinger R. J., and Manalis S. R. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnol., 26 (4), 417– 426 (2008). doi: 10.1038/nbt1388
- Stenberg M. and Nygren H. Kinetics of antigen-antibody reactions at solid-liquid interfaces. J. Immunol. Methods, 113 (1), 3–15 (1988). doi: 10.1016/0022-1759(88)90376-6
- Yamamoto S. and Sano Y. Short-cut method for predicting the productivity of affinity chromatography. J. Chromatography A, 597 (1–2), 173–179 (1992). doi: 10.1016/0021-9673(92)80107-6
- Patel B. C. and Luo R. G. Protein adsorption dissociation constants in various types of biochromatography. Studies in Surface Science and Catalysis, 120 A, 829– 845 (1999). doi: 10.1016/s0167-2991(99)80573-4
- Landry J. P. P., Ke Y., Yu G.-L. L., and Zhu X. D. D. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based labelfree assay platform. J. Immunol. Methods, 417, 86–96 (2015). doi: 10.1016/j.jim.2014.12.011
- Pellequer J. L. L. and Van Regenmortel M. H. V. H. V. Measurement of kinetic binding constants of viral antibodies using a new biosensor technology. J. Immunol. Methods, 166 (1), 133–143 (1993). doi: 10.1016/0022-1759(93)90337-7
- Cho H. K., Seo S. M., Cho I. H., Paek S. H., Kim D. H., and Paek S. H. Minimum-step immuno-analysis based on continuous recycling of the capture antibody. Analyst, 136 (7), 1374–1379 (2011). doi: 10.1039/c0an00811g
Supplementary files
