Study of Cytotoxicity of Selenium Nanoparticles Synthesized Using Artificial Metal-Binding Tumor-Specific Protein W8-3C
- Authors: Pozdnyakova N.V1,2, Biryukova Y.K3, Sokolova Z.A1, Baryshnikova M.A1, Shcherbakova E.S2,4, Smirnova M.S2, Shevelev A.B2
-
Affiliations:
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Research Laboratory "Genetics", Kursk State University
- Issue: Vol 69, No 5 (2024)
- Pages: 1018-1028
- Section: Cell biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/676124
- DOI: https://doi.org/10.31857/S0006302924050096
- EDN: https://elibrary.ru/MKBKKU
- ID: 676124
Cite item
Abstract
Keywords
About the authors
N. V Pozdnyakova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; N.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, 115522 Russia; Moscow, 119991 Russia
Yu. K Biryukova
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, 119334 Russia
Z. A Sokolova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian FederationMoscow, 115522 Russia
M. A Baryshnikova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian FederationMoscow, 115522 Russia
E. S Shcherbakova
N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences; Research Laboratory "Genetics", Kursk State University
Email: ledera@yandex.ru
Moscow, 119991 Russia; Kursk, 305000 Russia
M. S Smirnova
N.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, 119991 Russia
A. B Shevelev
N.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, 119991 Russia
References
- Jan N., Shah H., Khan S., Nasar F., Madni A., Badshah S. F., Ali A., and Bostanudin M. F. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. Naunyn. Schmiedeberg's Arch. Pharmacol., 397, 3565–3584 (2024). doi: 10.1007/s00210-023-02865-z
- Bareja S. and Sharma R. K. Comparative effects of chemical and green zinc oxide nanoparticles in caprine testis: ultrastructural and steroidogenic enzyme analysis. Ultrastruct. Pathol., 48 (1), 42–55, (2024). doi: 10.1080/01913123.2023.2286963
- Barchielli G., Capperucci A., and Tanini D. The role of selenium in pathologies: an updated review. Antioxidants (Basel), 11 (2), 251 (2022). doi: 10.3390/antiox11020251
- Mesalam N. M., Ibrahim M. A., Mousa M. R., and Said N. M. Selenium and vitamin E ameliorate lead acetate-induced hepatotoxicity in rats via suppression of oxidative stress, mRNA of Heat shock proteins, and NF-kB production. J. Trace Elem. Med. Biol., 79, 127256 (2023). doi: 10.1016/j.jtemb.2023.127256
- Anghinoni J. M., Birmann P. T., da Rocha M. J., Gomes C. S., Davies M. J., Brüning C. A., Savegnago L., and Lenardão E. J. Recent advances in the synthesis and antioxidant activity of low molecular mass organoselenium molecules. Molecules (Basel), 28, 7349 (2023). doi: 10.3390/molecules28217349
- Dogaru C.B., Muscurel C., Duţă C., and Stoian I. “Alphabet” selenoproteins: their characteristics and physiological roles. Int. J. Mol. Sci., 24, 15992 (2023). doi: 10.3390/ijms242115992
- H osnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Peng Q., Baron M., Melcova M., Opatrilova R., Zidkova J., Bjørklund G., Sochor J., and Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int. J. Nanomedicine, 2018 (13), 2107–2128 (2018). doi: 10.2147/IJN.S157541
- Davis S. S. Biomédical applications of nanotechnology – implications for drug targeting and gene therapy. Trends Biotechnol., 15, 217–224 (1997). doi: 10.1016/S0167-7799(97)01036-6
- Khurana A., Tekula S., Saifi M. A., Venkatesh P., and Godugu C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 111, 802–812 (2019). doi: 10.1016/j.biopha.2018.12.146
- P ehlivan Ö., Waliczek M., Kijewska M., and Stefanowicz P. Selenium in peptide chemistry. Molecules (Basel), 28, 3198 (2023). doi: 10.3390/molecules28073198
- Zhao J., Wang Z., Zhong M., Xu Q., Li X., Chang B., and Fang J. Integration of a diselenide unit generates fluorogenic camptothecin prodrugs with improved cytotoxicity to cancer cells. J. Med. Chem., 64, 17979–17991 (2021). doi: 10.1021/acs.jmedchem.1c01362
- Selmani A., Ulm L., Kasemets K., Kurvet I., Erceg I., Barbir R., Pem B., Santini P., Marion I. D., Vinković T., Krivohlavek A., Sikirić M. D., Kahru A., and Vrček I. V. Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere, 250, 126265 (2020). doi: 10.1016/j.chemosphere.2020.126265
- Kumari M., Ray L., Purohit M. P., Patnaik S., Pant A. B., Shukla Y., Kumar P., and Gupta K. C. Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich’s ascites carcinoma bearing mice. Eur. J. Pharm. Biopharm., 117, 346– 362 (2017). doi: 10.1016/j.ejpb.2017.05.003
- Wang Y., Chen P., Zhao G., Sun K., Li D., Wan X., and Zhang J. Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo. Food Chem. Toxicol. Int. J., 85, 71–77 (2015). doi: 10.1016/j.fct.2015.08.006
- Peng D., Zhang J., Liu Q., and Taylor E. W. Size Effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J. Inorg. Biochem., 101, 1457–1463 (2007). doi: 10.1016/j.jinorgbio.2007.06.021
- Zhou Y., Xu M., Liu Y., Bai Y., Deng Y., Liu J., and Chen L. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells. Colloids Surf. B. Biointerfaces, 144, 118–124 (2016). doi: 10.1016/j.colsurfb.2016.04.004
- Liu T., Zeng L., Jiang W., Fu Y., Zheng W., and Chen T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomed. Nanotechnol. Biol. Med., 11, 947–958 (2015). doi: 10.1016/j.nano.2015.01.009
- Hien N. Q., Tuan P. D., Van Phu D., Lan N. T. K., Duy N. N., and Hoa T. T. Gamma Co-60 ray irradiation synthesis of dextran stabilized selenium nanoparticles and their antioxidant activity gamma Co-60 ray irradiation synthesis of dextran stabilized selenium nanoparticles and their antioxidant activity. Mater. Chem. Phys., 205, 29–34 (2018). doi: 10.1016/j.matchemphys.2017.11.003
- Jia X., Liu Q., Zou S., Xu X., and Zhang L. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr. Polym., 117, 434–442 (2015). doi: 10.1016/j.carbpol.2014.09.088
- Nguyen D. N., Van Dang P., Le Q. A., Kim Nguyen L. T., Nguyen H. Q., Thu Tran N. T., Le Bao Tran H., PhanT. D., and Bui H. M. Preparation and effect of selenium nanoparticles/oligochitosan on the white blood cell recovery of mice exposed to gamma-ray radiation. J. Chem., 2021, e6635022 (2021). doi: 10.1155/2021/6635022
- Yang F., Tang Q., Zhong X., Bai Y., Chen T., Zhang Y., Li Y., and Zheng W. Surface decoration by spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomed., 7, 835–844 (2012). doi: 10.2147/IJN.S28278
- Bai K., Hong B., He J., Hong Z., and Tan R. Preparation and antioxidant properties of selenium nanoparticlesloaded chitosan microspheres. Int. J. Nanomed., 12, 4527–4539 (2017). doi: 10.2147/IJN.S129958
- Wang Z., Ji L., Ren Y., Liu M., Ai X., and Yang C. Preparation and anti-tumor study of dextran 70,000-selenium nanoparticles and poloxamer 188-selenium nanoparticles. AAPS PharmSciTech, 23, 29 (2021). doi: 10.1208/s12249-021-02141-4
- Mekkawy A. I., Fathy M., and Mohamed H. B. Evaluation of different surface coating agents for selenium nanoparticles: enhanced anti-inflammatory activity and drug loading capacity. Drug Des. Devel. Ther., 16, 1811– 1825 (2022). doi: 10.2147/DDDT.S360344
- Lin Z.-H. and Wang C.-R. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater. Chem. Phys., 92, 591–594 (2005). doi: 10.1016/j.matchemphys.2005.02.023
- Hoffmann P. R. and Berry M. J. The Influence of selenium on immune responses. Mol. Nutr. Food Res., 52, 1273–1280 (2008). doi: 10.1002/mnfr.200700330
- Zeng H. and Combs G. F. Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J. Nutr. Biochem., 19, 1–7 (2008). doi: 10.1016/j.jnutbio.2007.02.005
- Noè R., Inglese N., Romani P., Serafini T., Paoli C., Calciolari B., Fantuz M., Zamborlin A., Surdo N. C., SpadaV., Spacci M., Volta S., Ermini M. L., Di Benedetto G., Frusca V., Santi C., Lefkimmiatis K., Dupont S., Voliani V., Sancineto L., and Carrer A. Organic selenium induces ferroptosis in pancreatic cancer cells. Redox Biol., 68, 102962 (2023). doi: 10.1016/j.redox.2023.102962
- Philipp T. M., Scheller A. S., Krafczyk N., Klotz L.-O., and Steinbrenner H. Methanethiol: a scent mark of dysregulated sulfur metabolism in cancer. Antioxidants, 12 (9), 1780 (2023). doi: 10.3390/antiox12091780
- Fang L., Zhang R., Shi L., Xie J., Ma L., Yang Y., Yan X., and Fan K. Protein-nanocaged selenium induces t(8;21) leukemia cell differentiation via epigenetic regulation. Adv. Sci., 10 (35), e2300698 (2023). doi: 10.1002/advs.202300698
- Varlamova E. G., Goltyaev M. V., Mal’tseva V. N., Turovsky E. A., Sarimov R. M., Simakin A. V., and Gudkov S. V. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int. J. Mol. Sci., 22, 7798 (2021). doi: 10.3390/ijms22157798
- Pelyhe C. and Mezes M. Myths and facts about the effects of nano selenium in farm animals mini-review. Eur. Chem. Bull., 2, 1049–1052 (2013).
- Dung N. T., Trong T. D., Vu N. T., Binh N. T., MinhT. T. L., and Luan L. Q. Radiation synthesis of selenium nanoparticles capped with β-glucan and its immunostimulant activity in cytoxan-induced immunosuppressed mice. Nanomaterials, 11 (9), 2439 (2021). doi: 10.3390/nano11092439
- Yazdi M. H., Mahdavi M., Faghfuri E., Faramarzi M. A., Sepehrizadeh Z., Hassan Z. M., Gholami M., and Shahverdi A. R. Th1 immune response induction by biogenic selenium nanoparticles in mice with breast cancer: preliminary vaccine model. Iran. J. Biotechnol., 13 (2), 1–9 (2015). doi: 10.15171/ijb.1056
- S pyridopoulou K., Aindelis G., Pappa A., and Chlichlia K. Anticancer activity of biogenic selenium nanoparticles: apoptotic and immunogenic cell death markers in colon cancer cells. Cancers, 13, 5335 (2021). doi: 10.3390/cancers13215335
- Pozdniakova N. V., Ryabaya O. V., Semkina A. S., Skribitsky V. A., and Shevelev A. B. Using ELP repeats as a scaffold for de novo construction of gadolinium-binding domains within multifunctional recombinant proteins for targeted delivery of gadolinium to tumour cells. Int. J. Mol. Sci., 23, 3297 (2022). doi: 10.3390/ijms23063297
- Koutsioumpa M., Polytarchou C., Courty J., Zhang Y., Kieffer N., Mikelis C., Skandalis S. S., Hellman U., Iliopoulos D., and Papadimitriou E. Interplay between Αvβ3 Integrin and nucleolin regulates human endothelial and glioma cell migration. J. Biol. Chem., 288, 343–354 (2013). doi: 10.1074/jbc.M112.387076
- Zhu X., Liu H., Dai Y., Wang X., Luo C., and Wei Q. Enhanced electrochemiluminescence of luminol based on Cu2O-Au heterostructure enabled multiple-amplification strategy. Biosens. Bioelectron., 151, 111970 (2020). doi: 10.1016/j.bios.2019.111970
- Lin J., Liu Y., Liu P., Qi W., Liu J., He X., Liu Q., Liu Z., Yin J., Lin J., Bao H., and Lin J. SNHG17 alters anaerobic glycolysis by resetting phosphorylation modification of PGK1 to foster pro-tumor macrophage formation in pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res., 42, 339 (2023). doi: 10.1186/s13046-023-02890-z
- Zhang J., Wang X., and Xu T. Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Semethylselenocysteine in mice. Toxicol. Sci., 101, 22–31 (2008). doi: 10.1093/toxsci/kfm221
- Zhai X., Zhang C., Zhao G., Stoll S., Ren F., and Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnol., 15, 4 (2017). doi: 10.1186/s12951-016-0243-4
- Bidkar A. P., Sanpui P., and Ghosh S. S. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomed., 12, 2641–2651 (2017). doi: 10.2217/nnm-2017-0189
- Felenda J. E., Turek C., and Stintzing F. C. Antiproliferative potential from aqueous Viscum Album L. preparations and their main constituents in comparison with ricin and purothionin on human cancer cells. J. Ethnopharmacol., 236, 100–107 (2019). doi: 10.1016/j.jep.2019.02.047
- Nazari M., Emamzadeh R., Jahanpanah M., Yazdani E., and Radmanesh R. A recombinant affitoxin derived from a HER3 affibody and diphteria-toxin has potent and selective antitumor activity. Int. J. Biol. Macromol., 219, 1122–1134 (2022). doi: 10.1016/j.ijbiomac.2022.08.150
- Shah N., Mohammad A. S., Saralkar P., Sprowls S. A., Vickers S. D., John D., Tallman R. M., Lucke-Wold B. P., Jarrell K. E., Pinti M., Nolan R. L., and Lockman P. R. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases. Pharmacol. Res., 132, 47–68 (2018). doi: 10.1016/j.phrs.2018.03.021
- Ali I., Rahis-Uddin, Salim K, Rather M. A., Wani W. A., and Haque A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 11 (2), 135–146 (2011). doi: 10.2174/156800911794328493
Supplementary files
