Study of Cytotoxicity of Selenium Nanoparticles Synthesized Using Artificial Metal-Binding Tumor-Specific Protein W8-3C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, the pW8-3C construct encoding the artificial tumor-specific protein W8-3C with the addition of 3 residues of free Cys at the C end was created and described. Using purified W8-3C protein, dispersions of nanoparticles 75.24 nm in diameter at polydispersity index (Pdi) of 0.064 and Se content of 1566 µg/mL were obtained and characterized for the first time. The dispersions remained stable upon storage for 6 months at +4°C. For comparison, the maximum Se content in the nanoparticle dispersion obtained in the presence of W8-3C protein and Pluronic F-127 was 399 µg/ml. The cytotoxic activity of the obtained nanoparticles was studied on transplanted cells of human tumor lines: HeLa (cervical carcinoma), U-87 MG (glioblastoma), MCF-7 (breast carcinoma) and HCT-116 (colon carcinoma) and compared with that on the diploid human fibroblast line WI-38 in vitro. It was shown that the IC50 of Se nanoparticles obtained using the W8-3C protein for tumor lines ranged from 5.25 to 8.37 µg/ml, while the IC50 for normal fibroblasts was 14.3 µg/ml (difference in values by a factor of 1.7–2.7 times).

About the authors

N. V Pozdnyakova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences

Moscow, 115522 Russia; Moscow, 119991 Russia

Yu. K Biryukova

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, 119334 Russia

Z. A Sokolova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Moscow, 115522 Russia

M. A Baryshnikova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Moscow, 115522 Russia

E. S Shcherbakova

N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences; Research Laboratory "Genetics", Kursk State University

Email: ledera@yandex.ru
Moscow, 119991 Russia; Kursk, 305000 Russia

M. S Smirnova

N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences

Moscow, 119991 Russia

A. B Shevelev

N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences

Moscow, 119991 Russia

References

  1. Jan N., Shah H., Khan S., Nasar F., Madni A., Badshah S. F., Ali A., and Bostanudin M. F. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. Naunyn. Schmiedeberg's Arch. Pharmacol., 397, 3565–3584 (2024). doi: 10.1007/s00210-023-02865-z
  2. Bareja S. and Sharma R. K. Comparative effects of chemical and green zinc oxide nanoparticles in caprine testis: ultrastructural and steroidogenic enzyme analysis. Ultrastruct. Pathol., 48 (1), 42–55, (2024). doi: 10.1080/01913123.2023.2286963
  3. Barchielli G., Capperucci A., and Tanini D. The role of selenium in pathologies: an updated review. Antioxidants (Basel), 11 (2), 251 (2022). doi: 10.3390/antiox11020251
  4. Mesalam N. M., Ibrahim M. A., Mousa M. R., and Said N. M. Selenium and vitamin E ameliorate lead acetate-induced hepatotoxicity in rats via suppression of oxidative stress, mRNA of Heat shock proteins, and NF-kB production. J. Trace Elem. Med. Biol., 79, 127256 (2023). doi: 10.1016/j.jtemb.2023.127256
  5. Anghinoni J. M., Birmann P. T., da Rocha M. J., Gomes C. S., Davies M. J., Brüning C. A., Savegnago L., and Lenardão E. J. Recent advances in the synthesis and antioxidant activity of low molecular mass organoselenium molecules. Molecules (Basel), 28, 7349 (2023). doi: 10.3390/molecules28217349
  6. Dogaru C.B., Muscurel C., Duţă C., and Stoian I. “Alphabet” selenoproteins: their characteristics and physiological roles. Int. J. Mol. Sci., 24, 15992 (2023). doi: 10.3390/ijms242115992
  7. H osnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Peng Q., Baron M., Melcova M., Opatrilova R., Zidkova J., Bjørklund G., Sochor J., and Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int. J. Nanomedicine, 2018 (13), 2107–2128 (2018). doi: 10.2147/IJN.S157541
  8. Davis S. S. Biomédical applications of nanotechnology – implications for drug targeting and gene therapy. Trends Biotechnol., 15, 217–224 (1997). doi: 10.1016/S0167-7799(97)01036-6
  9. Khurana A., Tekula S., Saifi M. A., Venkatesh P., and Godugu C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 111, 802–812 (2019). doi: 10.1016/j.biopha.2018.12.146
  10. P ehlivan Ö., Waliczek M., Kijewska M., and Stefanowicz P. Selenium in peptide chemistry. Molecules (Basel), 28, 3198 (2023). doi: 10.3390/molecules28073198
  11. Zhao J., Wang Z., Zhong M., Xu Q., Li X., Chang B., and Fang J. Integration of a diselenide unit generates fluorogenic camptothecin prodrugs with improved cytotoxicity to cancer cells. J. Med. Chem., 64, 17979–17991 (2021). doi: 10.1021/acs.jmedchem.1c01362
  12. Selmani A., Ulm L., Kasemets K., Kurvet I., Erceg I., Barbir R., Pem B., Santini P., Marion I. D., Vinković T., Krivohlavek A., Sikirić M. D., Kahru A., and Vrček I. V. Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere, 250, 126265 (2020). doi: 10.1016/j.chemosphere.2020.126265
  13. Kumari M., Ray L., Purohit M. P., Patnaik S., Pant A. B., Shukla Y., Kumar P., and Gupta K. C. Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich’s ascites carcinoma bearing mice. Eur. J. Pharm. Biopharm., 117, 346– 362 (2017). doi: 10.1016/j.ejpb.2017.05.003
  14. Wang Y., Chen P., Zhao G., Sun K., Li D., Wan X., and Zhang J. Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo. Food Chem. Toxicol. Int. J., 85, 71–77 (2015). doi: 10.1016/j.fct.2015.08.006
  15. Peng D., Zhang J., Liu Q., and Taylor E. W. Size Effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J. Inorg. Biochem., 101, 1457–1463 (2007). doi: 10.1016/j.jinorgbio.2007.06.021
  16. Zhou Y., Xu M., Liu Y., Bai Y., Deng Y., Liu J., and Chen L. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells. Colloids Surf. B. Biointerfaces, 144, 118–124 (2016). doi: 10.1016/j.colsurfb.2016.04.004
  17. Liu T., Zeng L., Jiang W., Fu Y., Zheng W., and Chen T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomed. Nanotechnol. Biol. Med., 11, 947–958 (2015). doi: 10.1016/j.nano.2015.01.009
  18. Hien N. Q., Tuan P. D., Van Phu D., Lan N. T. K., Duy N. N., and Hoa T. T. Gamma Co-60 ray irradiation synthesis of dextran stabilized selenium nanoparticles and their antioxidant activity gamma Co-60 ray irradiation synthesis of dextran stabilized selenium nanoparticles and their antioxidant activity. Mater. Chem. Phys., 205, 29–34 (2018). doi: 10.1016/j.matchemphys.2017.11.003
  19. Jia X., Liu Q., Zou S., Xu X., and Zhang L. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr. Polym., 117, 434–442 (2015). doi: 10.1016/j.carbpol.2014.09.088
  20. Nguyen D. N., Van Dang P., Le Q. A., Kim Nguyen L. T., Nguyen H. Q., Thu Tran N. T., Le Bao Tran H., PhanT. D., and Bui H. M. Preparation and effect of selenium nanoparticles/oligochitosan on the white blood cell recovery of mice exposed to gamma-ray radiation. J. Chem., 2021, e6635022 (2021). doi: 10.1155/2021/6635022
  21. Yang F., Tang Q., Zhong X., Bai Y., Chen T., Zhang Y., Li Y., and Zheng W. Surface decoration by spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomed., 7, 835–844 (2012). doi: 10.2147/IJN.S28278
  22. Bai K., Hong B., He J., Hong Z., and Tan R. Preparation and antioxidant properties of selenium nanoparticlesloaded chitosan microspheres. Int. J. Nanomed., 12, 4527–4539 (2017). doi: 10.2147/IJN.S129958
  23. Wang Z., Ji L., Ren Y., Liu M., Ai X., and Yang C. Preparation and anti-tumor study of dextran 70,000-selenium nanoparticles and poloxamer 188-selenium nanoparticles. AAPS PharmSciTech, 23, 29 (2021). doi: 10.1208/s12249-021-02141-4
  24. Mekkawy A. I., Fathy M., and Mohamed H. B. Evaluation of different surface coating agents for selenium nanoparticles: enhanced anti-inflammatory activity and drug loading capacity. Drug Des. Devel. Ther., 16, 1811– 1825 (2022). doi: 10.2147/DDDT.S360344
  25. Lin Z.-H. and Wang C.-R. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater. Chem. Phys., 92, 591–594 (2005). doi: 10.1016/j.matchemphys.2005.02.023
  26. Hoffmann P. R. and Berry M. J. The Influence of selenium on immune responses. Mol. Nutr. Food Res., 52, 1273–1280 (2008). doi: 10.1002/mnfr.200700330
  27. Zeng H. and Combs G. F. Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J. Nutr. Biochem., 19, 1–7 (2008). doi: 10.1016/j.jnutbio.2007.02.005
  28. Noè R., Inglese N., Romani P., Serafini T., Paoli C., Calciolari B., Fantuz M., Zamborlin A., Surdo N. C., SpadaV., Spacci M., Volta S., Ermini M. L., Di Benedetto G., Frusca V., Santi C., Lefkimmiatis K., Dupont S., Voliani V., Sancineto L., and Carrer A. Organic selenium induces ferroptosis in pancreatic cancer cells. Redox Biol., 68, 102962 (2023). doi: 10.1016/j.redox.2023.102962
  29. Philipp T. M., Scheller A. S., Krafczyk N., Klotz L.-O., and Steinbrenner H. Methanethiol: a scent mark of dysregulated sulfur metabolism in cancer. Antioxidants, 12 (9), 1780 (2023). doi: 10.3390/antiox12091780
  30. Fang L., Zhang R., Shi L., Xie J., Ma L., Yang Y., Yan X., and Fan K. Protein-nanocaged selenium induces t(8;21) leukemia cell differentiation via epigenetic regulation. Adv. Sci., 10 (35), e2300698 (2023). doi: 10.1002/advs.202300698
  31. Varlamova E. G., Goltyaev M. V., Mal’tseva V. N., Turovsky E. A., Sarimov R. M., Simakin A. V., and Gudkov S. V. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int. J. Mol. Sci., 22, 7798 (2021). doi: 10.3390/ijms22157798
  32. Pelyhe C. and Mezes M. Myths and facts about the effects of nano selenium in farm animals mini-review. Eur. Chem. Bull., 2, 1049–1052 (2013).
  33. Dung N. T., Trong T. D., Vu N. T., Binh N. T., MinhT. T. L., and Luan L. Q. Radiation synthesis of selenium nanoparticles capped with β-glucan and its immunostimulant activity in cytoxan-induced immunosuppressed mice. Nanomaterials, 11 (9), 2439 (2021). doi: 10.3390/nano11092439
  34. Yazdi M. H., Mahdavi M., Faghfuri E., Faramarzi M. A., Sepehrizadeh Z., Hassan Z. M., Gholami M., and Shahverdi A. R. Th1 immune response induction by biogenic selenium nanoparticles in mice with breast cancer: preliminary vaccine model. Iran. J. Biotechnol., 13 (2), 1–9 (2015). doi: 10.15171/ijb.1056
  35. S pyridopoulou K., Aindelis G., Pappa A., and Chlichlia K. Anticancer activity of biogenic selenium nanoparticles: apoptotic and immunogenic cell death markers in colon cancer cells. Cancers, 13, 5335 (2021). doi: 10.3390/cancers13215335
  36. Pozdniakova N. V., Ryabaya O. V., Semkina A. S., Skribitsky V. A., and Shevelev A. B. Using ELP repeats as a scaffold for de novo construction of gadolinium-binding domains within multifunctional recombinant proteins for targeted delivery of gadolinium to tumour cells. Int. J. Mol. Sci., 23, 3297 (2022). doi: 10.3390/ijms23063297
  37. Koutsioumpa M., Polytarchou C., Courty J., Zhang Y., Kieffer N., Mikelis C., Skandalis S. S., Hellman U., Iliopoulos D., and Papadimitriou E. Interplay between Αvβ3 Integrin and nucleolin regulates human endothelial and glioma cell migration. J. Biol. Chem., 288, 343–354 (2013). doi: 10.1074/jbc.M112.387076
  38. Zhu X., Liu H., Dai Y., Wang X., Luo C., and Wei Q. Enhanced electrochemiluminescence of luminol based on Cu2O-Au heterostructure enabled multiple-amplification strategy. Biosens. Bioelectron., 151, 111970 (2020). doi: 10.1016/j.bios.2019.111970
  39. Lin J., Liu Y., Liu P., Qi W., Liu J., He X., Liu Q., Liu Z., Yin J., Lin J., Bao H., and Lin J. SNHG17 alters anaerobic glycolysis by resetting phosphorylation modification of PGK1 to foster pro-tumor macrophage formation in pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res., 42, 339 (2023). doi: 10.1186/s13046-023-02890-z
  40. Zhang J., Wang X., and Xu T. Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Semethylselenocysteine in mice. Toxicol. Sci., 101, 22–31 (2008). doi: 10.1093/toxsci/kfm221
  41. Zhai X., Zhang C., Zhao G., Stoll S., Ren F., and Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnol., 15, 4 (2017). doi: 10.1186/s12951-016-0243-4
  42. Bidkar A. P., Sanpui P., and Ghosh S. S. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomed., 12, 2641–2651 (2017). doi: 10.2217/nnm-2017-0189
  43. Felenda J. E., Turek C., and Stintzing F. C. Antiproliferative potential from aqueous Viscum Album L. preparations and their main constituents in comparison with ricin and purothionin on human cancer cells. J. Ethnopharmacol., 236, 100–107 (2019). doi: 10.1016/j.jep.2019.02.047
  44. Nazari M., Emamzadeh R., Jahanpanah M., Yazdani E., and Radmanesh R. A recombinant affitoxin derived from a HER3 affibody and diphteria-toxin has potent and selective antitumor activity. Int. J. Biol. Macromol., 219, 1122–1134 (2022). doi: 10.1016/j.ijbiomac.2022.08.150
  45. Shah N., Mohammad A. S., Saralkar P., Sprowls S. A., Vickers S. D., John D., Tallman R. M., Lucke-Wold B. P., Jarrell K. E., Pinti M., Nolan R. L., and Lockman P. R. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases. Pharmacol. Res., 132, 47–68 (2018). doi: 10.1016/j.phrs.2018.03.021
  46. Ali I., Rahis-Uddin, Salim K, Rather M. A., Wani W. A., and Haque A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 11 (2), 135–146 (2011). doi: 10.2174/156800911794328493

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences