Impact of Immobilization Method on DNA Stretching Characteristics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of stretching a flexible polymer with given conditions at the ends, under the action of a fixed force, is considered. A mathematical model is constructed for different energy functions describing the elasticity of the polymer and different immobilization methods. It is shown that the dependence of stretching on the polymer length is linear. Numerical results are given. The results obtained allow to improve the analysis of experimental data on polymer stretching. The theory offers several verifiable predictions, and experimental methods are proposed to improve the accuracy of measurements.

About the authors

M. A Didin

Moscow Institute of Physics and Technology

Email: didin.maxim@yandex.ru
Dolgoprudny, Russia

References

  1. Marko J. F. and Siggia E. D. Stretching DNA. Macromolecules , 28 (26), 8759-8770 (1995). doi: 10.1021/ma00130a008
  2. Shon M. J., Rah S. H., and Yoon T. Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci. Adv., 5 (6), eaav1697 (2019). doi: 10.1126/sciadv.aav1697
  3. Smith S. B., Finzi L., and Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258 (5085), 11221126 (1992). doi: 10.1126/science.1439819
  4. Seol Y., Li J., Nelson P. C., Perkins T. T., and Betterton M. D. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm. Biophys J., 93 (12), 4360-4373. (2007). DOI: 10,1529/biophysj,107,112995
  5. Fiasconaro A. and Falo F. Elastic traits of the extensible discrete wormlike chain model. Phys. Rev. E., 107 (2), 024501 (2023). doi: 10.1103/PhysRevE.107.024501
  6. Kratky-Porod Chain [Electronic resource]. URL: https://www.polymerdatabase.com/polymer%20physics/Worm-like%20Chain.html (accessed: 01.08.2023).
  7. Livadaru L., Netz R. R., and Kreuzer H. J. Stretching Response of discrete semiflexible polymers. Macromolecules, 36 (10), 3732-3744 (2003). doi: 10.1021/ma020751g
  8. Koslover E. F. and Spakowitz A. J. Discretizing elastic chains for coarse-grained polymer models. Soft Matter, 9 (29), 7016-7027 (2013). doi: 10.1039/C3SM50311A
  9. Wiggins P. A. and Nelson P. C. Generalized theory of semiflexible polymers. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 73 (3, Pt 1), 031906 (2006). doi: 10.1103/PhysRevE.73.031906
  10. Andersen N. T., Teng Y., and Chen J. Z. Y. Stretching a Semiflexible Polymer of Finite Length // Macromolecules, 55 (1), 210-216 (2022). doi: 10.1021/acs.macromol.1c02087
  11. Vologodskii A. and Frank-Kamenetskii M. D. Strong bending of the DNA. double helix. Nucl. Acids Res., 41 (14), 6785-6792 (2013). doi: 10.1093/nar/gkt396
  12. Drozdetski A. V, Mukhopadhyay A., and Onufriev A. V. Strongly bent double-stranded DNA: reconciling theory and experiment. Front. Phys. 7, 195 (2019). doi: 10.3389/fphy.2019.00195
  13. Fosdick R. L. and James R. D. The elastica and the problem of the pure bending for a non-convex stored energy function. J. Elasticity, 11 (2), 165-186 (1981).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences