Analysis of RNA Editing in Conserved Sequence Blocks of the Trypanosomatid RPS12 Gene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The RPS12 gene in the mitochondrial genome encodes the important protein from the small ribosomal subunit. The transcript of this gene in a number of organisms can undergo RNA editing, for instance it is edited actively in all tripanosomatida. In this study, a comparison between the sequences of edited mRNA and tertiary structures of the proteins when mRNA were translated from some of the members of Tripanosomatidae family showed that tertiary structures of the RPS12 gene remained unchanged in all species while only two short conserved regions were found in the primary structure of the gene. By means of computer modeling it was demonstrated that the found regions encode amino acids turned to the direction of the decoding center of ribosome. The nature of editing patterns demonstrates that evolutionary conservation of these regions is independent of the editing process and, moreover, the evolutionary tendencies on the reduction of editing process in a number of sites was seen within the conserved sites of the RPS12 gene.

About the authors

E. S Gerasimov

M.V. Lomonosov Moscow State University

Email: jalgard@gmail.com
Department of Biology Moscow, Russia

Yu. A Rudenskaya

M.V. Lomonosov Moscow State University

Department of Biology Moscow, Russia

E. A Bryushkova

M.V. Lomonosov Moscow State University

Department of Biology Moscow, Russia

O. A Korzhavina

M.V. Lomonosov Moscow State University

Department of Biology Moscow, Russia

A. A Kolesnikov

M.V. Lomonosov Moscow State University

Department of Biology Moscow, Russia

References

  1. Lukeš J., Kaur B., and Speijer D. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. , 37, 99-102 (2021). doi: 10.1016/j.tig.2020.10.004
  2. Read L. K., Lukeš J., and Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdisciplinary Rev.: RNA, 7, 33-51 (2016). doi: 10.1002/wrna.1313
  3. Shlomai J. The structure and replication of kinetoplast DNA. Curr. Mol. Med., 4, 623-647 (2004). doi: 10.2174/1566524043360096
  4. Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Göringer H. U., Hajduk S., Lukeš J., Madison-Antenucci S., Maslov D. A., McDermott S. M., Ochsenreiter T., Read L. K., Salavati R., Schnaufer A., Schneider A., Simpson L., Stuart K., Yurchenko V., Zhou Z. H., and Aphasizhev R. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol., 36, 337-355 (2020). doi: 10.1016/j.pt.2020.01.006
  5. Zimmer S. L., Simpson R. M., and Read L. K. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdisciplinary Rev.: RNA, 9, e1487 (2018). doi: 10.1002/wrna.1487
  6. Gerasimov E. S., Afonin D. A., Korzhavina O. A., Lukeš J., Low R., Hall N., Tyler K., Yurchenko V., and Zimmer S. L. Mitochondrial RNA. editing in Trypanoplasma borreli: New tools, new revelations. Comput. Struct. Biotechnol. J., 20, 6388-6402 (2022). doi: 10.1016/j.csbj.2022.11.023
  7. Gerasimov E. S., Gasparyan A. A., Kaurov I., Tichý B., Logacheva M. D., Kolesnikov A. A., Lukeš J., Yurchenko V, Zimmer S. L., and Flegontov P. Trypanosomatid mitochondrial RNA. editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucl. Acids Res., 46, 765-781 (2018). doi: 10.1093/nar/gkx1202
  8. Ochsenreiter T., Anderson S., Wood Z. A., and Hajduk S. L. Alternative RNA. editing produces a novel protein involved in mitochondrial DNA. maintenance in trypanosomes. Mol. Cell. Biol., 28, 5595-5604 (2008). doi: 10.1128/MCB.00637-08
  9. Kirby L. E. and Koslowsky D. Mitochondrial dual-coding genes in Trypanosoma brucei. PLoSNeglected Tropic. Dis., 11, e0005989 (2017). doi: 10.1371/journal.pntd.0005989
  10. Gerasimov E. S., Gasparyan A. A., Afonin D. A., Zimmer S. L., Kraeva N., Lukeš J., Yurchenko V., and Kolesnikov A. A. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA. editing events. Nucl. Acids Res., 49, 3354-3370 (2021). doi: 10.1093/nar/gkab114
  11. Simpson L., Douglass S. M., Lake J. A., Pellegrini M., and Li F. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Neglected Tropic. Dis., 9, e0003841 (2015). doi: 10.1371/jour-nal.pntd.0003841
  12. Afonin D. A., Gerasimov E. S., Sveráková I. Š., Záhonová K., Gahura O., Albanaz A. T. S., Myšková E., Bykova A., Paris Z., Lukeš J., Opperdoes F. R., HorváthA., Zimmer S. L., and Yurchenko V. Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment. Nucl. Acids Res., 52 (7), 3870-3885 (2024). doi: 10.1093/nar/gkae168
  13. Gerasimov E. S., Ramirez-Barrios R., Yurchenko V., and Zimmer S. L. Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA, 28, 993-1012 (2022). doi: 10.1261/rna.079088.121
  14. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., and Madden T. L. BLAST+: architecture and applications. BMC Bioinformatics, 10, 421 (2009). doi: 10.1186/1471-2105-10-421
  15. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F. T., de Beer T. A. P., Rempfer C., Bordoli L., Lepore R., and Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucl. Acids Res., 46, W296-W303 (2018). doi: 10.1093/nar/gky427
  16. Lenarčič T., Niemann M., Ramrath D. J. F., Caldera ro S., Flügel T., Saurer M., Leibundgut M., Boehringer D., Prange C., Horn E. K., Schneider A., and Ban N. Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proc. Natl. Acad. Sci. USA, 119, e2114710118 (2022). doi: 10.1073/pnas.2114710118
  17. Ramrath D. J. F., Niemann M., Leibundgut M., Bieri P., Prange C., Horn E. K., Leitner A., Boehringer D., Schneider A., and Ban N. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science, 362, eaau7735 (2018). doi: 10.1126/science.aau7735
  18. Small I. D., Schallenberg-Rüdinger M., Takenaka M., Mireau H., and Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. Cell Mol. Biol., 101, 1040-1056 (2020). doi: 10.1111/tpj.14578
  19. Lu B., Wilson R. K., Phreaner C. G., Mulligan R. M., and Hanson M. R. Protein polymorphism generated by differential RNA editing of a plant mitochondrial rps12 gene. Mol. Cell. Biol., 16, 1543-1549 (1996). doi: 10.1128/MCB.16.4.1543
  20. Koslowsky D. J., Bhat G. J., Read L. K., and Stuart K. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell, 67, 537-546 (1991). DOI: 0.1016/0092-8674(91)90528-7
  21. Maslov D. A. and Simpson L. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell, 70, 459-467 (1992). doi: 10.1016/0092-8674(92)90170-h
  22. Aravin A. A., Yurchenko V., Merzlyak E. M., and Kolesnikov A. A. The mitochondrial ND8 gene from Crithidia oncopelti is not pan-edited. FEBS Lett., 431, 457-460 (1998). doi: 10.1016/s0014-5793(98)00813-8
  23. Gerasimov E. S., Kostygov A. Y., Yan S., and Kolesnikov A. A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids, Eur. J. Protistology, 48, 185-193 (2012). doi: 10.1016/j.ejop.2011.09.002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences