Transport of Glycerol Through the Human Sperm Membrane during Cryopreservation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cryopreservation of biological material is an important task in many areas of biology and medicine especially for assisted reproductive technologies. Cryoprotective media including cell-penetrating and non-penetrating components are used for effective cryopreservation of cells. Usually glycerin in various concentrations acts as a penetrating component. However, elucidating the mechanisms of the cryoprotective action of these compounds as well as increasing the proportion of surviving cells after cryopreservation remain urgent objective of cryobiology. The work examines the mechanism of glycerol transfer through sperm membranes with the participation of aquaporins using the method of mathematical modeling. The presented model describes dynamics of changes in sperm volume depending on the concentration of glycerol and sucrose in the cryoprotective medium. As a result of the analysis the characteristic time for establishing equilibrium between the studied cryoprotective medium and cells was calculated and amounts to t = 80 s in the presence of glycerol 12% vol. The concentration of sucrose (0.16 M) at which the cell returns to its original volume after incubation in a cryoprotective medium was determined. It has been shown that human sperm can contain 6750 AQP7 with a permeability PAQP7 = 0.00366 µm3/s. The experiments performed showed an increase in the sperm motility index when correcting the concentration of sucrose in the solution according to the modeling results.

About the authors

A. A Ivanova

Lomonosov Moscow State University

Email: Annetkurella@yandex.ru
Physical faculty Moscow, Russia

I. I Leonov

Lomonosov Moscow State University

Physical faculty Moscow, Russia

E. S Gnilozub-Volobueva

Lomonosov Moscow State University

Physical faculty Moscow, Russia

M. A Ovchinnikov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Moscow, Russia

S. A Yakovenko

Lomonosov Moscow State University

Physical faculty Moscow, Russia

E. Yu Simonenko

Lomonosov Moscow State University

Physical faculty Moscow, Russia

References

  1. Kroløkke С. Life in the cryo-kennel: The ‘exceptional’ life of frozen pet DNA. Soc. Stud. Sci., 49 (2), 162-169 (2019). doi: 10.1177/0306312719837610
  2. Hildebrandt T. B., Hermes R., Goeritz F., Appeltant R., Colleoni S., de Mori B., Diecke S., Drukker M., Galli C., Hayashi K., Lazzari G., Loi P., Payne J., Renfree M., Seet S., Stejskal J., Swegen A., Williams S.A., Zainuddin Z. Z., Holtze S. The ART of bringing extinction to a freeze - History and future of species conservation, exemplified by rhinos. Theriogenology, 169, 76—88 (2021). doi: 10.1016/j.theriogenology.2021.04.006
  3. Jaiswal A. N. and Vagga A. Cryopreservation: A review article. Cureus 14 (11), e31564 (2022). doi: 10.7759/cureus.31564
  4. Elliott G. D., Wang S., and Fuller B. J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74—91 (2017). doi: 10.1016/j.cryobiol.2017.04.004
  5. Žáková J., Lousová E., Ventruba P., Crha I., PochopováH., Vinklárková J., Tesařová E., and Nussir M. Sperm cryopreservation before testicular cancer treatment and its subsequent utilization for the treatment of infertility. Sci. World J., 2014, 575978 (2014). doi: 10.1155/2014/575978
  6. Tamburrino L., Traini G., Marcellini A., Vignozzi L., Baldi E., and Marchiani S. Cryopreservation of human spermatozoa: functional, molecular and clinical aspects Int. J. Mol. Sci., 24 (5), 4656 (2023). doi: 10.3390/ijms24054656
  7. Hezavehei M., Sharafi M., Kouchesfahani H. M., Henkel R., Agarwal A., Esmaeili V, and Shahverdi A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online, 37 (3), 327-339 (2018). doi: 10.1016/j.rbmo.2018.05.012
  8. Colás C., Junquera C., Pérez-Pé R., Cebrián-Pérez J. A., and Muiño-Blanco T. Ultrastructural study of the ability of seminal plasma proteins to protect ram spermatozoa against cold-shock. Microsc. Res. Technique, 72 (8), 566572 (2009). doi: 10.1002/jemt.20710
  9. Aliakbari F., Taghizabet N., Azizi F., Rezaei-Tazangi F., Gelehkolaee K. S., and Kharazinejad E. A review of methods for preserving male fertility. Zygote, 30, 289-297 (2022). doi: 10.1017/S0967199421000071
  10. Gao D. and Critser J. K. Mechanisms of cryoinjury in living cells. ILAR J., 41 (4), 187-196 (2000). doi: 10.1093/ilar.41.4.187
  11. Chatterjee S. and Gagnon C., Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol. Reprod. Devel., 59 (4), 451-458 (2001). doi: 10.1002/mrd.1052
  12. Белоус А. М. и Грищенко В. И. Криобиология (Наук. думка, Киев, 1994).
  13. Popov I., Greenbaum (Gutina) A., Sokolov A. P., and Feldman Y. The puzzling first-order phase transition in water-glycerol mixtures. Phys. Chem. Chem. Phys. 17 (27), 18063-18071 (2015). doi: 10.1039/C5CP02851E
  14. Ozimic S., Ban-Frangez H., and Stimpfel M. Sperm cryopreservation today: approaches, efficiency, and pitfalls. Curr. Issu. Mol. Biol., 45 (6), 4716-4734 (2023). doi: 10.3390/cimb45060300
  15. A. M. Hossain, C. O. Osuamkpe, Archives ofAndrology 53 (2), 99 (2007). doi: 10.1080/01485010701225675
  16. K. Murata and H. Tanaka, General nature of liquid-liquid transition in aqueous organic solutions. Nature Commun., 4, 2844 (2013). doi: 10.1038/ncomms3844
  17. Fuller B. J. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett., 25 (6), 375-388 (2004). PMID: 15660165
  18. Roy S., Arora S., Kumari P., and Ta M. A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton's jelly mesenchymal stem cells. Cryobiology, 68 (3), 467-472 (2014). doi: 10.1016/j.cryobiol.2014.03.010
  19. Gurruchaga H., del Burgo L. S., Garate A., Delgado D., Sanchez P., Orive G., Ciriza J., Sanchez M. and Pedraz J. L. Cryopreservation of human mesenchymal stem cells in an allogeneic bioscaffold based on platelet rich plasma and synovial fluid. Sci Rep., 7 (1), 15733 (2017). doi: 10.1038/s41598-017-16134-6
  20. Arutyunyan I. V, Kananykhina E. Yu., Elchaninov A. V, and Fatkhudinov T. Kh. Influence of sucrose on the efficiency of cryopreservation of human umbilical cord-derived multipotent stromal cells with the use ofvarious penetrating cryoprotectants. Bull. Exp. Biol. Med., 171 (1), 150 (2021). doi: 10.1007/s10517-021-05187-3
  21. Gao D. Y., Mazur P., Kleinhans F. W., Watson P. F., Noiles E. E., and Critser J. K. Glycerol permeability of human spermatozoa and its activation energy. Cryobiology, 29 (6), 657-667 (1992). doi: 10.1016/0011-2240(92)90068-d
  22. Pellavio G. and Laforenza U. Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie, 188, 45-51 (2021). doi: 10.1016/j.biochi.2021.05.011
  23. Gilmore J. A., McGann L. E., Liu J., Gao D. Y., Peter A. T., Kleinhans F. W., and Critser J. K. Effect of cryoprotectant solutes on water permeability of human spermatozoa. Biology of Reproduction, 53 (5), 985-995 (1995). doi: 10.1095/biolreprod53.5.985
  24. Nobel P. S. The Boyle-Van't Hoff relation. J. Theor. Biol., 23 (3), 375 (1969). doi: 10.1016/0022-5193(69)90025-3
  25. Lfe in the Frozen State, Ed. by B. J. Fuller, N. Lane, and E. E. Benson (CRC Press, Boca Raton, USA, 2004). doi: 10.1201/9780203647073
  26. Lahmann J. M., Benson J. D., and Higgins A. Z. Concentration dependence of the cell membrane permeability to cryoprotectant and water and implications for design of methods for post-thaw washing of human erythrocytes. Cryobiology, 80, 1-11 (2018). doi: 10.1016/j.cryobiol.2017.12.003
  27. Roudier N., Ripoche P., Gane P., Le Pennec P. Y., Daniels G., Cartron J.-P., and Bailly P. AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J. Biol. Chem., 277 (48), 45854-45859 (2002). doi: 10.1074/jbc.M208999200
  28. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed. (World Health Organization: Geneva, Switzerland, 2021).
  29. Roudier N., Verbavatz J.-M., Maurel C., Ripoche P., and Tacnet F. Evidence for the presence of aquaporin-3 in human red blood cells. J. Biol. Chem., 273 (14), 8407-8412 (1998). doi: 10.1074/jbc.273.14.8407
  30. Rodriguez R. A., Liang H., Chen L. Y., Plascencia-Villa G., and Perry G. Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. Biochim. Biophys. Acta — Biomembranes, 1861 (4), 768-775 (2019). doi: 10.1016/j.bbamem.2019.01.008
  31. Kuche P. W., Cox C. D., Daners D., Shishmarev D., and Galvosas P. Surface model of the human red blood cell simulating changes in membrane curvature under strain. Sci. Rep., 11 (1), 13712 (2021). doi: 10.1038/s41598-021-92699-7
  32. Kedem O. and Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electro-lytes. Biochim. Biophys Acta, 27, 229-246 (1958). doi: 10.1016/0006-3002(58)90330-5
  33. Du J., Kleinhans F. W., Mazur P., and Critser J. K. Human spermatozoa glycerol permeability and activation energy determined by electron paramagnetic resonance. Biochim. Biophys. Acta — Biomembranes, 1194 (1), 1-11 (1994). doi: 10.1016/0005-2736(94)90196-1
  34. Fujii T., Hirayama H., Fukuda S., Kageyama S., Naito A., Yoshino H., Moriyasu S., Yamazaki T., Sakamoto K., Hayakawa H., Takahashi K., Takahashi Y., and Sawai K. Expression and localization of aquaporins 3 and 7 in bull spermatozoa and their relevance to sperm motility after cryopreservation. J. Reprod. Devel., 64 (4), 327335 (2018). doi: 10.1262/jrd.2017-166

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences