Shock Wave-induced Cell Membrane Permeabilization of Pseudomonas aeruginosa
- Authors: Letuta S.N1, Ishemgulov A.T1, Davydova O.K1, Nikiyan A.N1, Grigoriev M.E1
-
Affiliations:
- Orenburg State University
- Issue: Vol 69, No 5 (2024)
- Pages: 990-996
- Section: Cell biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/676136
- DOI: https://doi.org/10.31857/S0006302924050068
- EDN: https://elibrary.ru/MKIRZT
- ID: 676136
Cite item
Abstract
About the authors
S. N Letuta
Orenburg State UniversityOrenburg, 460018 Russia
A. T Ishemgulov
Orenburg State University
Email: azamat.ischemgulov@yandex.ru
Orenburg, 460018 Russia
O. K Davydova
Orenburg State UniversityOrenburg, 460018 Russia
A. N Nikiyan
Orenburg State UniversityOrenburg, 460018 Russia
M. E Grigoriev
Orenburg State UniversityOrenburg, 460018 Russia
References
- Hamblin M. R. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr. Opin. Microbiol., 33, 67 (2016). doi: 10.1016/j.mib.2016.06.008
- Huang L., Dai T., and Hamblin M. R. Antimicrobial photodynamic inactivation and photodynamic therapy for infections. Methods Mol. Biol., 635, 155–173 (2010). doi: 10.1007/978-1-60761-697-9_12
- Svyatchenko V. A., Nikinov S. D., Mayorov A. P., Gelfond M. L., and Loktev V. B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn. Ther., 33, 102112 (2021). doi: 10.1016/j.pdpdt.2020.102112
- Lago A. D. N., Fortes A. B. C., Furtado G. S., Menezes C. F. S., and Goncalves L. M. Association of antimicrobial photodynamic therapy and photobiomodulation for herpes simplex labialis resolution: case series. Photodiagnosis Photodyn. Ther., 32, 102070 (2020). doi: 10.1016/j.pdpdt.2020.102070
- Fabio G. B., Martin B. A., Dalmolin L. F., and Lopez R. F. V. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles. J. Drug Deliv. Sci. Tech., 80, 104147 (2023). doi: 10.1016/j.jddst.2022.104147
- Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B, 39 (1), 1–18 (1997). doi: 10.1016/s1011-1344(96)07428-3
- Кустов А. В., Гарасько Е.В., Белых Д. В., Худяева И. С., Старцева О. М., Макаров В. В., Стрельников А. И. и Березин Д. Б. Фотосенсибилизаторы хлоринового ряда для антимикробной фотодинамической терапии. Успехи современного естествознания, 12 (2), 263 (2016). doi: 10.17513/use.36297
- O’Neill J . T ackling a global health crisis: initial steps. The Review on Antimicrobial Resistance (Review on antimicrobial resistance, London, 2015). https://amr-review.org/sites/default/files/Report-52.15.pdf
- Hapala I. Breaking the Barrier: Methods for reversible permeabilization of cellular membranes Crit. Rev. Biotechnol., 17, 105 (1997). doi: 10.3109/07388559709146609
- Liu, J., Lewis T. N., and Prausnitz M. R. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm. Res., 15, 918 (1998). doi: 10.1023/a:1011984817567
- Huber P. E. and Pesterer P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther., 7, 1516 (2000). doi: 10.1038/sj.gt.3301242
- Ho S. Y. and Mittal G. S. Electroporation of cell membranes: a review. Crit. Rev. Biotechnol., 16, 349 (1996). doi: 10.3109/07388559609147426
- Lauer U., Burgelt E., Squire Z., Messmer K., Hofschneider P. H., Gregor M. and Delius M. Shock wave permeabilization as a new gene transfer method. Gene Ther., 4, 710–715 (1997). doi: 10.1038/sj.gt.3300462
- Gambihler S., Delius M., and Ellwart J. W. Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J. Membr. Biol., 141, 267–275 (1994). doi: 10.1007/BF00235136
- Lee, S. and Doukas A. G. Laser-generated stress waves and their effects on the cell membrane. J. Sel. Top. Quant., 5, 997–1003 (1999). doi: 10.1109/2944.796322
- Mulholland S. E., Lee S., McAulie D. J., and Doukas A. G. Cell loading with laser-generated stress waves: the role of the stress gradient. Pharm. Res., 16, 514–518 (1999). doi: 10.1023/a:1018814911497
- Alfimov M. V., Batekha I. G., Sheck Yu. B., and Gerko V. I. Triplet-triplet absorption and energy transfer from high triplet states. Spectrochimica Acta. Part A: Mol. Spectr., 27, 329–341 (1971). doi: 10.1016/0584-8539(71)80039-9
- Летохов В. С. Нелинейные селективные фотопроцессы в атомах и молекулах (Наука, М., 1983).
- Nickel B. and Roden G. Stepwise two-photon excitation of tetracene; fluorescence from upper excited singlet states. Ber. Bunsenges. Phys. Chem., 81 (3), 281– 285 (1977). doi: 10.1002/bbpc.19770810308
- Tobita S., Kaisu Y., Kobayashi H., and Tanaka I. Study of higher excited singlet states of zinc(II)‐tetraphenylporphin. J. Chem. Phys., 81 (7), 2962–2969 (1984). doi: 10.1063/1.448046
- Orner G. C., Topp M. R. Biphotonic laser excitation of upper singlet state fluorescence in organic dyes. Chem. Phys. Lett., 36 (5), 295–300 (1975). doi: 10.1016/0009-2614(75)80240-5
- Lin H.-B. and Topp M. R. Low quantum-yield molecular fluorescence. Aromatic hydrocarbons in solution at 300 K. Chem. Phys. Lett., 46 (2), 251–255 (1977). doi: 10.1016/0009-2614(77)80309-6
- Ermolaev V. L. Ultrafast nonradiative transitions between higher excited states in organic molecules Russ. Chem. Rev., 70, 471–490 (2001). doi: 10.1070/RC2001v070n06ABEH000657
- Nagaoka C., Fujita M., Takemura T., and Baba H. Fluorescence from an upper excited state of o-hydroxybenzaldehyde in the vapor phase. Chem. Phys. Lett., 123 (6), 489-492 (1986). doi: 10.1016/0009-2614(86)80048-3
- Letuta S. N., Pashkevich S. N., Ishemgulov A. T., and Nikiyan A. N. Inactivation of planktonic microorganisms by acoustic shock waves. Russ. J. Phys. Chem. A, 95 (4), 848–854 (2021). doi: 10.1134/S0036024421040142
- Letuta S. N., Ishemgulov A. T., Dorofeev D. V., and Tsurko D. E. Kinetics of induced absorption of multiatomic molecules during two-photon excitation. Bull. of the Lebedev Physics Institute, 50, 54–59 (2023). doi: 10.3103/S1068335623130055
- Yadav H. S., Murty D. S., Verma S. N., Sinha K. H. C., Gupta B. M., and Chand D. Measurement of refractive index of water under high dynamic pressures. J. Appl. Phys., 44, 2197–2200 (1973). doi: 10.1063/1.1662536
- Rohatgi-Mukherjee K. K. Fundamentals of photochemistry (Wiley Eastern Ltd., New Delhi, Bangalore, Bombay, 1978). doi: 10.1002/bbpc.19790830824
- Tokubo L. M., Rosalen P. L., and Cássia J. Antimicrobial effect of photodynamic therapy using erythrosine/methylene blue combination on Streptococcus mutans biofilm. Photodiagn. Photodynam. Ther., 23, 94– 98 (2018). doi: 10.1016/j.pdpdt.2018.05.004
- Fracalossi C., Nagata J. Y., Pellosi D. S., Terada R., Hioka N., Baesso M. L., Sato F., Rosale P. L., Caetano W., and Fujimaki M. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans. Photodiagn. Photodynam. Ther., 15, 127–132 (2016). doi: 10.1016/j.pdpdt.2016.06.011
- Letuta S. N., Ishemgulov A. T., Nikiyan A. N., Razdobreev D. A., Galaktionova L. V., Dorofeev D. V., and Tsurko D. E. Mechanisms of damage in Salmonella typhimurium and Staphylococcus aureus upon pulse photoexcitation of molecular sensitizers. Biophysics, 67, 419–426 (2022). doi: 10.1134/S0006350922030137
- Ito Y., Veysset D., Kooi S. E., Martynowych D., Nakagawa K., and Nelson K. A. Interferometric and fluorescence analysis of shock wave effects on cell membrane. Communications Physics, 3 (2020). doi: 10.1038/s42005-020-0394-3
- Kodama T., Hamblin M. R., and Doukas A. G. Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophysical Journal, 79, 1821–1832 (2000). doi: 10.1016/S0006-3495(00)76432-0
Supplementary files
