Shock Wave-induced Cell Membrane Permeabilization of Pseudomonas aeruginosa

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Effects of acoustic shock waves on membrane permeability of Gram-negative bacteria P. aeruginosa for an anionic photosensitizer, such as erythrosine, were studied. Shock waves were generated by rapid local medium heating due to nonradiative relaxation of high electronically excited states of photosensitizer molecules introduced with a high-power laser pulse. It has been shown that upon exposure to shock waves bacteria display an increase in membrane permeability; erythrosine enters the cells, followed by an increase in the photodynamic efficacy on microorganisms.

About the authors

S. N Letuta

Orenburg State University

Orenburg, 460018 Russia

A. T Ishemgulov

Orenburg State University

Email: azamat.ischemgulov@yandex.ru
Orenburg, 460018 Russia

O. K Davydova

Orenburg State University

Orenburg, 460018 Russia

A. N Nikiyan

Orenburg State University

Orenburg, 460018 Russia

M. E Grigoriev

Orenburg State University

Orenburg, 460018 Russia

References

  1. Hamblin M. R. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr. Opin. Microbiol., 33, 67 (2016). doi: 10.1016/j.mib.2016.06.008
  2. Huang L., Dai T., and Hamblin M. R. Antimicrobial photodynamic inactivation and photodynamic therapy for infections. Methods Mol. Biol., 635, 155–173 (2010). doi: 10.1007/978-1-60761-697-9_12
  3. Svyatchenko V. A., Nikinov S. D., Mayorov A. P., Gelfond M. L., and Loktev V. B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn. Ther., 33, 102112 (2021). doi: 10.1016/j.pdpdt.2020.102112
  4. Lago A. D. N., Fortes A. B. C., Furtado G. S., Menezes C. F. S., and Goncalves L. M. Association of antimicrobial photodynamic therapy and photobiomodulation for herpes simplex labialis resolution: case series. Photodiagnosis Photodyn. Ther., 32, 102070 (2020). doi: 10.1016/j.pdpdt.2020.102070
  5. Fabio G. B., Martin B. A., Dalmolin L. F., and Lopez R. F. V. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles. J. Drug Deliv. Sci. Tech., 80, 104147 (2023). doi: 10.1016/j.jddst.2022.104147
  6. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B, 39 (1), 1–18 (1997). doi: 10.1016/s1011-1344(96)07428-3
  7. Кустов А. В., Гарасько Е.В., Белых Д. В., Худяева И. С., Старцева О. М., Макаров В. В., Стрельников А. И. и Березин Д. Б. Фотосенсибилизаторы хлоринового ряда для антимикробной фотодинамической терапии. Успехи современного естествознания, 12 (2), 263 (2016). doi: 10.17513/use.36297
  8. O’Neill J . T ackling a global health crisis: initial steps. The Review on Antimicrobial Resistance (Review on antimicrobial resistance, London, 2015). https://amr-review.org/sites/default/files/Report-52.15.pdf
  9. Hapala I. Breaking the Barrier: Methods for reversible permeabilization of cellular membranes Crit. Rev. Biotechnol., 17, 105 (1997). doi: 10.3109/07388559709146609
  10. Liu, J., Lewis T. N., and Prausnitz M. R. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm. Res., 15, 918 (1998). doi: 10.1023/a:1011984817567
  11. Huber P. E. and Pesterer P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther., 7, 1516 (2000). doi: 10.1038/sj.gt.3301242
  12. Ho S. Y. and Mittal G. S. Electroporation of cell membranes: a review. Crit. Rev. Biotechnol., 16, 349 (1996). doi: 10.3109/07388559609147426
  13. Lauer U., Burgelt E., Squire Z., Messmer K., Hofschneider P. H., Gregor M. and Delius M. Shock wave permeabilization as a new gene transfer method. Gene Ther., 4, 710–715 (1997). doi: 10.1038/sj.gt.3300462
  14. Gambihler S., Delius M., and Ellwart J. W. Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J. Membr. Biol., 141, 267–275 (1994). doi: 10.1007/BF00235136
  15. Lee, S. and Doukas A. G. Laser-generated stress waves and their effects on the cell membrane. J. Sel. Top. Quant., 5, 997–1003 (1999). doi: 10.1109/2944.796322
  16. Mulholland S. E., Lee S., McAulie D. J., and Doukas A. G. Cell loading with laser-generated stress waves: the role of the stress gradient. Pharm. Res., 16, 514–518 (1999). doi: 10.1023/a:1018814911497
  17. Alfimov M. V., Batekha I. G., Sheck Yu. B., and Gerko V. I. Triplet-triplet absorption and energy transfer from high triplet states. Spectrochimica Acta. Part A: Mol. Spectr., 27, 329–341 (1971). doi: 10.1016/0584-8539(71)80039-9
  18. Летохов В. С. Нелинейные селективные фотопроцессы в атомах и молекулах (Наука, М., 1983).
  19. Nickel B. and Roden G. Stepwise two-photon excitation of tetracene; fluorescence from upper excited singlet states. Ber. Bunsenges. Phys. Chem., 81 (3), 281– 285 (1977). doi: 10.1002/bbpc.19770810308
  20. Tobita S., Kaisu Y., Kobayashi H., and Tanaka I. Study of higher excited singlet states of zinc(II)‐tetraphenylporphin. J. Chem. Phys., 81 (7), 2962–2969 (1984). doi: 10.1063/1.448046
  21. Orner G. C., Topp M. R. Biphotonic laser excitation of upper singlet state fluorescence in organic dyes. Chem. Phys. Lett., 36 (5), 295–300 (1975). doi: 10.1016/0009-2614(75)80240-5
  22. Lin H.-B. and Topp M. R. Low quantum-yield molecular fluorescence. Aromatic hydrocarbons in solution at 300 K. Chem. Phys. Lett., 46 (2), 251–255 (1977). doi: 10.1016/0009-2614(77)80309-6
  23. Ermolaev V. L. Ultrafast nonradiative transitions between higher excited states in organic molecules Russ. Chem. Rev., 70, 471–490 (2001). doi: 10.1070/RC2001v070n06ABEH000657
  24. Nagaoka C., Fujita M., Takemura T., and Baba H. Fluorescence from an upper excited state of o-hydroxybenzaldehyde in the vapor phase. Chem. Phys. Lett., 123 (6), 489-492 (1986). doi: 10.1016/0009-2614(86)80048-3
  25. Letuta S. N., Pashkevich S. N., Ishemgulov A. T., and Nikiyan A. N. Inactivation of planktonic microorganisms by acoustic shock waves. Russ. J. Phys. Chem. A, 95 (4), 848–854 (2021). doi: 10.1134/S0036024421040142
  26. Letuta S. N., Ishemgulov A. T., Dorofeev D. V., and Tsurko D. E. Kinetics of induced absorption of multiatomic molecules during two-photon excitation. Bull. of the Lebedev Physics Institute, 50, 54–59 (2023). doi: 10.3103/S1068335623130055
  27. Yadav H. S., Murty D. S., Verma S. N., Sinha K. H. C., Gupta B. M., and Chand D. Measurement of refractive index of water under high dynamic pressures. J. Appl. Phys., 44, 2197–2200 (1973). doi: 10.1063/1.1662536
  28. Rohatgi-Mukherjee K. K. Fundamentals of photochemistry (Wiley Eastern Ltd., New Delhi, Bangalore, Bombay, 1978). doi: 10.1002/bbpc.19790830824
  29. Tokubo L. M., Rosalen P. L., and Cássia J. Antimicrobial effect of photodynamic therapy using erythrosine/methylene blue combination on Streptococcus mutans biofilm. Photodiagn. Photodynam. Ther., 23, 94– 98 (2018). doi: 10.1016/j.pdpdt.2018.05.004
  30. Fracalossi C., Nagata J. Y., Pellosi D. S., Terada R., Hioka N., Baesso M. L., Sato F., Rosale P. L., Caetano W., and Fujimaki M. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans. Photodiagn. Photodynam. Ther., 15, 127–132 (2016). doi: 10.1016/j.pdpdt.2016.06.011
  31. Letuta S. N., Ishemgulov A. T., Nikiyan A. N., Razdobreev D. A., Galaktionova L. V., Dorofeev D. V., and Tsurko D. E. Mechanisms of damage in Salmonella typhimurium and Staphylococcus aureus upon pulse photoexcitation of molecular sensitizers. Biophysics, 67, 419–426 (2022). doi: 10.1134/S0006350922030137
  32. Ito Y., Veysset D., Kooi S. E., Martynowych D., Nakagawa K., and Nelson K. A. Interferometric and fluorescence analysis of shock wave effects on cell membrane. Communications Physics, 3 (2020). doi: 10.1038/s42005-020-0394-3
  33. Kodama T., Hamblin M. R., and Doukas A. G. Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophysical Journal, 79, 1821–1832 (2000). doi: 10.1016/S0006-3495(00)76432-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences