The Role of Two Isoforms of Heat Shock Protein Hsp90 in Resistance of Human Fibrosarcoma Cells HT1080 to Hsp90 Inhibitors and Cytoxic Drugs
- Authors: Petrenko V.S1, Morenkov O.S1, Skarga Y.Y.1, Zhmurina M.A1, Vrublevskaya V.V1
-
Affiliations:
- Institute of Cell Biophysics, Russian Academy of Sciences
- Issue: Vol 69, No 6 (2024)
- Pages: 1214-1223
- Section: Cell biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/676146
- DOI: https://doi.org/10.31857/S0006302924060086
- EDN: https://elibrary.ru/NLKMWQ
- ID: 676146
Cite item
Abstract
About the authors
V. S Petrenko
Institute of Cell Biophysics, Russian Academy of Sciences
Email: 79182797935@yandex.ru
Pushchino, Russia
O. S Morenkov
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
Yu. Yu Skarga
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
M. A Zhmurina
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
V. V Vrublevskaya
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
References
- Biebl M. M. and Buchner J. Structure, function, and regulation of the Hsp90 machinery. Perspect. Biol., 11 (9), a034017 (2019). doi: 10.1101/cshperspect.a034017
- Neckers L., Mollapour M., and Tsutsumi S. The complex dance of the molecular chaperone Hsp90. Trends Biochem. Sci., 34, 223 (2009). doi: 10.1016/j.tibs.2009.01.006
- Maiti S. and Picard D. Cytosolic Hsp90 isoform-specific functions and clinical significance. Biomolecules, 12, 1166 (2022). doi: 10.3390/biom12091166
- Wandinger S. K., Richter K., and Buchner J. The Hsp90 chaperone machinery. J. Biol. Chem., 283, 18473 (2008). doi: 10.1038/nrm.2017.20
- Prodromou C. The ‘active life’ of Hsp90 complexes. Biochim. Biophys. Acta, 1823, 614 (2012). doi: 10.1016/j.bbamcr.2011.07.020
- Zuehlke A. D., Beebe R., Neckers L., and Prince T. Regulation and function of the human HSP90AA1 gene. Gene., 570, 8 (2015). doi: 10.1016/j.gene.2015.06.018
- Hoter A., El-Sabban M. E., and Naim H. Y. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 19 (9), 2560 (2018). doi: 10.3390/ijms19092560
- Pick E., Kluger Y., Giltnane J. M., Moeder C., Camp R. L., Rimm D. L., and Kluger H. M. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res., 67, 2932 (2007).
- Ciocca D. R., Arrigo A. P., and Calderwood S. K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: An update. Arch. Toxicol., 87, 19 (2013). doi: 10.1007/s00204-012-0918-z
- Dernovsek J. and Tomasic T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol. Ther., 245, 108396 (2023). doi: 10.1016/j.pharmthera.2023.108396
- Sanchez J., Carter T. R., Cohen M. S., and Blagg B. S. Old and new approaches to target the Hsp90 chaperone. Curr. Cancer Drug Targets., 20 (4), 253 (2020). doi: 10.2174/1568009619666191202101330
- Miyata Y., Nakamoto H., and Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm. Des., 19 (3), 347 (2013). DOI: 10.2174/ 138161213804143725
- Neckers L., Blagg B., Haystead T., Trepel J. B., Whitesell L., and Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress & Chaperones., 23 (4), 467 (2018). doi: 10.1007/s12192-018-0877-2
- Park S., Park J. A., Jeon J. Y., and Lee Y. Traditional and novel mechanisms of heat shock protein 90 (HSP90) Inhibition in cancer chemotherapy including HSP90 cleavage. Biomol. Ther., 27 (5), 423 (2019). doi: 10.4062/biomolther.2019.051
- Gorska M. and Popowska U. Geldanamycin and its derivatives as Hsp90 inhibitors. Front. Biosci. (Landmark Ed)., 17 (6), 2269 (2012). doi: 10.2741/4050
- Saad Z. U., Robert B., and Zihai L. 17 AAG for HSP90 inhibition in cancer — from bench to bedside. Curr Mol. Med., 9 (5), 654 (2009). doi: 10.2174/156652409788488757
- Taiyab A., Srinivas U. K., and Sreedhar A. S. 17-(Allylamino)-17-demethoxygeldanamycin combination with diferuloylmethane selectively targets mitogen kinase pathway in a human neuroblastoma cell line. J. Cancer Ther., 1, 197 (2010). doi: 10.4236/jct.2010.14031
- Biamonte M. A., Water R. V., Arndt J. W., Scannevin R. H., Perret D., and Lee W. Heat shock protein 90: Inhibitors in clinical trials. J. Med. Chem., 53 (1), 3 (2010). doi: 10.1021/jm9004708
- Hong D., Said R., Falchook G., Naing A., Moulder S., Tsimberidou A., Galluppi G., Dakappagari N., Storgard C., Kurzrock R., and Rosen L.S. Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin. Cancer Res., 19 (17), 4824 (2013). doi: 10.1158/1078-0432.CCR-13-0477
- Soti C., Racz A., and Csermely P. A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J. Biol. Chem., 277 (9), 7066 (2002). doi: 10.1074/jbc.M105568200
- Berko Y. A., FunmilolaA. F., andAkala E. O. Fabrication of paclitaxel and 17AAG-loaded poly-E-caprolactone nanoparticles for breast cancer treatment. J. Pharm. Drug Deliv. Res., 10 (1), 196 (2021). doi: 10.48047/ecb/2023.12.si4.1190
- Katragadda U., Fan W., Wang Y., Wang Y., Teng Q., and Tan C. Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis. PLoS One., 8 (3), e58619 (2013). doi: 10.1371/journal.pone.0058619
- Ui T., Morishima K., Saito S., Sakuma Y., Fujii H., Hosoya Y., Ishikawa S., Aburatani H., Fukayama M., Niki T., and Yasuda Y. The HSP90 inhibitor 17-N-allylamino-17 -demethoxy geldanamycin ( 17-AAG) synergizes with cisplatin and induces apoptosis in cisplatin-resistant esophageal squamous cell carcinoma cell lines via the Akt/XIAP pathway. Oncol Rep., 31 (2), 619 (2014). doi: 10.3892/or.2013.2899
- Schmidt L., Issa I. I., Haraldsdóttir H., Hald J. J., Schmitz A., Due H., and Dybkær K. Hsp90 inhibition sensitizes DLBCL cells to cisplatin. Cancer Chemother. Pharmacol., 89, 431 (2022). doi: 10.1007/s00280-022-04407-5
- Li Z. N. and Luo Y. HSP90 inhibitors and cancer: Prospects for use in targeted therapies (Review). Oncol Rep., 49 (1), 6 (2023). doi: 10.3892/or.2022.8443
- Magyar C. T. J., Vashist Y. K., Stroka D., Kim-Fuchs C., Berger M. D., and Banz V. Heat shock protein 90 (HSP90) inhibitors in gastrointestinal cancer: where do we currently stand? — A systematic review. J. Cancer Res. Clin. Oncol., 149, 8039 (2023). doi: 10.1007/s00432-023-04689-z
- Lang J. E., Forero-Torres A., Yee D., Yau C., Wolf D., Park J., Parker B. A., Chien A. J., Wallace A. M., Murthy R., Albain K. S., and Ellis E. D. Safety and efficacy of HSP90 inhibitor ganetespib for neoadjuvant treatment of stage II/III breast cancer. NPJ Breast Cancer, 8 (1), 128 (2022). doi: 10.1038/s41523-022-00493-z
- Becker B., Multhof, G., Farkas B., Wild P. J., Landthaler M., and Stolz W. Induction ofHsp90 protein expression in malignant melanomas and melanoma metastases . Exp. Dermatol., 13 (1), 27 (2004). doi: 10.1111/j.0906-6705.2004.00114.x
- Petrenko V., Vrublevskaya V, Bystrova M., Masulis I., Kopylova E., Skarga Y., Zhmurina M., Morenkov O.Proliferation, migration, and resistance to oxidative and thermal stresses of HT1080 cells with knocked out genes encoding Hsp90a and Hsp90ß Biochem. Biophys. Res. Commun. , 674, 62 (2023). doi: 10.1016/j.bbrc.2023.06.076
- Chiang T. W., Le Sage C., Larrieu D., Demir M., and Jackson S. P. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci. Rep., 6, 24356 (2016). doi: 10.1038/srep24356
- Dasari S. and Tchounwou P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 740, 364 (2014). doi: 10.1016/j.ejphar.2014.07.025
- Kciuk M., GielecinskaA., Mujwar S., Kołat D., Kałuzińska-Kołat Z., Celik E., and Kontek R. Doxorubicin — an agent with multiple mechanisms of anticancer activity. Cells, 12 (4), 659 (2023). doi: 10.3390/cells12040659
- Bonvini P., Zorzi E., Basso G., and Rosolen A. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia, 21 (4), 838 (2007). doi: 10.1038/sj.leu.2404528
- Wilhelm S. M., Adnane L., and Newell P. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther., 7 (10), 3129 (2008). doi: 10.1158/1535-7163.MCT-08-0013
- Wang T. H., Wang H. S., and Soong Y. K. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer, 88 (11), 2619 (2000). doi: 10.1002/1097-0142(20000601)88:11<2619::aid-cn-cr26>3.0.co;2-j
- Kallas A., Pook M, Maimets M., Zimmermann K., and Maimets T. Nocodazole treatment decreases expression of pluripotency markers nanog and Oct4 in human embryonic stem cells. PLoS One., 6 (4), e19114 (2011). doi: 10.1371/journal.pone.0019114
- Mo Q., Zhang Y., Jin X., Gao Y., Wu Y., Hao X., Gao Q., and Chen P. Geldanamycin, an inhibitor of Hsp90, increases paclitaxel-mediated toxicity in ovarian cancer cells through sustained activation of the p38/H2AX axis. Tumour Biol., 37 (11), 14745 (2016). doi: 10.1007/s13277-016-5297-2
Supplementary files
